Laboratoire de Physico-Chimie des Polymères et Milieux Dispersés, UMR7615 UPMC-ESPCI-CNRS, Ecole Supérieure de Physique et de Chimie Industrielles ESPCI, 10 rue Vauquelin, 75231 Paris, Cedex 05, France.
Langmuir. 2010 Sep 7;26(17):13839-46. doi: 10.1021/la1019982.
Highly monodisperse poly(N-isopropylacrylamide), PNiPAM, microgels were prepared by the conventional radical polymerization of NiPAM in the presence of dimethylamino ethyl methacrylate (DMAEMA) monomers at various concentrations. The effect of DMAEMA on the polymerization of PNiPAM microgels was examined at constant initiator (V50) and cross-linker (MBA) concentrations. The presence of DMAEMA in the synthesis batch allows for the preparation of PNiPAM microgels with controlled size and a narrow size distribution. The oil(dodecane)/water interfacial properties of the model PNiPAM microgels were then investigated. The pendant drop technique was used to measure the interfacial tensions as a function of temperature. Over the whole range of temperature (20-45 degrees C), the interfacial tension remains low (on the order of 17 mN/m) and goes through a minimum (12 mN/m) at a temperature of about 34 degrees C, which well matches the volume phase transition temperature (VPTT) of PNiPAM microgels. Below the VPTT, the decrease in the interfacial tension with temperature is likely to be due to the adsorption of dense layers because of the decrease of the excluded volume interactions. Above the VPTT, we suggest that the increase in the interfacial tension with temperature comes from the adsorption of loosely packed PNiPAM microgels. We also studied the effect of temperature on the stability of emulsions. Dodecane in water emulsions, which form at ambient temperature, are destabilized as the temperature exceeds the VPTT. In light of the interfacial tension results, we suggest that emulsion destabilization arises from the adsorption of aggregates above the VPTT and not from an important desorption of microgels. Aggregate adsorption would bring a sufficiently high number of dodecane molecules into contact with water to induce coalescence without changing the interfacial tension very much.
采用传统自由基聚合的方法,以 N-异丙基丙烯酰胺(NiPAM)为单体,二甲基氨基乙基甲基丙烯酸酯(DMAEMA)为功能单体,在引发剂(V50)和交联剂(MBA)浓度不变的情况下,制备了单分散性良好的聚 N-异丙基丙烯酰胺(PNiPAM)微凝胶。DMAEMA 的存在可控制 PNiPAM 微凝胶的粒径和粒径分布。然后,我们研究了模型 PNiPAM 微凝胶在油(正十二烷)/水界面上的性质。采用悬滴法测量了界面张力随温度的变化。在整个温度范围内(20-45℃),界面张力保持在低值(约 17 mN/m),在 34℃左右达到最小值(12 mN/m),这与 PNiPAM 微凝胶的体积相转变温度(VPTT)很好地匹配。低于 VPTT,界面张力随温度的降低可能是由于由于排斥体积相互作用的降低,导致致密层的吸附。高于 VPTT,我们认为界面张力随温度的升高来自于疏松堆积的 PNiPAM 微凝胶的吸附。我们还研究了温度对乳液稳定性的影响。在环境温度下形成的正十二烷/水乳液,当温度超过 VPTT 时会失稳。根据界面张力的结果,我们认为乳液失稳是由于 VPTT 以上的聚集体吸附引起的,而不是由于微凝胶的大量解吸引起的。聚集体的吸附会将足够数量的正十二烷分子与水接触,从而引发聚并,而界面张力不会发生很大变化。