Suppr超能文献

基于冠醚基团标记的温敏性聚 N-异丙基丙烯酰胺微凝胶的 FRET 衍生比率荧光钾离子传感器的制备。

FRET-derived ratiometric fluorescent K+ sensors fabricated from thermoresponsive poly(N-isopropylacrylamide) microgels labeled with crown ether moieties.

机构信息

CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China.

出版信息

J Phys Chem B. 2010 Sep 30;114(38):12213-20. doi: 10.1021/jp1052369.

Abstract

We report on the fabrication of ratiometric fluorescent K(+) sensors based on thermoresponsive poly(N-isopropylacrylamide) (PNIPAM) microgels covalently incorporated with K(+)-recognizing 4-acrylamidobenzo-18-crown-6 residues (B18C6Am), fluorescence resonance energy transfer (FRET) donor dyes, 4-(2-acryloyloxyethylamino)-7-nitro-2,1,3-benzoxadiazole (NBDAE), and rhodamine-B-based FRET acceptors (RhBEA) by utilizing K(+)-induced changes in microgel volume phase transition (VPT) temperatures. P(NIPAM-B18C6Am-NBDAE-RhBEA) microgels were synthesized via the free radical emulsion copolymerization technique. The spatial proximity between FRET pairs (NBDAE and RhBEA dyes) within microgels can be tuned via thermoinduced collapse and swelling of thermoresponsive microgels above and below VPT temperatures, leading to the facile modulation of FRET efficiencies. B18C6Am moieties within P(NIPAM-B18C6Am-NBDAE-RhBEA) microgels can preferentially capture K(+) via the formation of 1:1 molecular recognition complexes, resulting in the enhancement of microgel hydrophilicity and elevated VPT temperatures. Thus, the gradual addition of K(+) into microgel dispersions at intermediate temperatures, i.e., between VPT temperatures of P(NIPAM-B18C6Am-NBDAE-RhBEA) microgels in the absence and presence of K(+) ions, respectively, can directly lead to the reswelling of initially collapsed microgels. This process can be monitored by changes in fluorescence intensity ratios, i.e., FRET efficiencies. The presence of FRET pairs within P(NIPAM-B18C6Am-NBDAE-RhBEA) microgels allows for the facile in situ monitoring of thermoinduced and K(+)-induced VPTs of dually responsive microgels. The response time for fluorescent K(+)-sensing was further investigated via the stopped-flow technique, which reveals that the process completes within ∼4 s. This work represents the first report of thermoresponsive microgel-based ratiometric fluorescent sensors for both K(+) ions and temperatures.

摘要

我们报告了基于温敏聚(N-异丙基丙烯酰胺)(PNIPAM)微凝胶的比率荧光 K(+)传感器的制造,该微凝胶通过共价键合 K(+)识别 4-丙烯酰胺基苯并-18-冠-6 残基(B18C6Am)、荧光共振能量转移(FRET)供体染料 4-(2-丙烯酰氧基乙基氨基)-7-硝基-2,1,3-苯并恶二唑(NBDAE)和罗丹明 B 基 FRET 受体(RhBEA)来实现。利用 K(+)诱导的微凝胶体积相转变(VPT)温度变化。通过自由基乳液共聚技术合成了 P(NIPAM-B18C6Am-NBDAE-RhBEA)微凝胶。通过在 VPT 温度以上和以下热诱导温敏微凝胶的收缩和膨胀,可以调节 FRET 对(NBDAE 和 RhBEA 染料)在微凝胶内的空间接近度,从而方便地调节 FRET 效率。P(NIPAM-B18C6Am-NBDAE-RhBEA)微凝胶内的 B18C6Am 部分可以通过形成 1:1 分子识别络合物优先捕获 K(+),导致微凝胶亲水性增强和 VPT 温度升高。因此,在中间温度下,即分别在不存在和存在 K(+)离子的情况下 P(NIPAM-B18C6Am-NBDAE-RhBEA)微凝胶 VPT 温度之间,逐渐向微凝胶分散体中添加 K(+),可以直接导致最初收缩的微凝胶重新溶胀。通过荧光强度比(即 FRET 效率)的变化可以监测到这种变化。P(NIPAM-B18C6Am-NBDAE-RhBEA)微凝胶内 FRET 对的存在允许轻松原位监测双重响应微凝胶的热诱导和 K(+)诱导的 VPT。通过停流技术进一步研究了荧光 K(+)传感的响应时间,结果表明该过程在约 4 s 内完成。这项工作代表了用于 K(+)离子和温度的温敏微凝胶基比率荧光传感器的首次报道。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验