Suppr超能文献

利用动态微管进行主动运输来提供位置信息。

Providing positional information with active transport on dynamic microtubules.

机构信息

Institute for Atomic and Molecular Physics, Foundation for Fundamental Research on Matter, Amsterdam, The Netherlands.

出版信息

Biophys J. 2010 Aug 4;99(3):726-35. doi: 10.1016/j.bpj.2010.05.026.

Abstract

Microtubules (MTs) are dynamic protein polymers that change their length by switching between growing and shrinking states in a process termed dynamic instability. It has been suggested that the dynamic properties of MTs are central to the organization of the eukaryotic intracellular space, and that they are involved in the control of cell morphology, but the actual mechanisms are not well understood. Here, we present a theoretical analysis in which we explore the possibility that a system of dynamic MTs and MT end-tracking molecular motors is providing specific positional information inside cells. We compute the MT length distribution for the case of MT-length-dependent switching between growing and shrinking states, and analyze the accumulation of molecular motors at the tips of growing MTs. Using these results, we show that a transport system consisting of dynamic MTs and associated motor proteins can deliver cargo proteins preferentially to specific positions within the cell. Comparing our results with experimental data in the model organism fission yeast, we propose that the suggested mechanisms could play important roles in setting length scales during cellular morphogenesis.

摘要

微管(MTs)是动态的蛋白质聚合物,通过在称为动态不稳定性的过程中在生长和收缩状态之间切换来改变其长度。有人认为 MTs 的动态特性是真核细胞内空间组织的核心,并且它们参与了细胞形态的控制,但实际机制尚不清楚。在这里,我们提出了一种理论分析,其中我们探讨了动态 MTs 和 MT 末端跟踪分子马达系统在细胞内提供特定位置信息的可能性。我们针对生长和收缩状态之间的 MT 长度依赖性切换情况计算了 MT 长度分布,并分析了分子马达在生长 MT 尖端的积累情况。使用这些结果,我们表明由动态 MTs 和相关的马达蛋白组成的运输系统可以优先将货物蛋白输送到细胞内的特定位置。将我们的结果与模型生物裂殖酵母的实验数据进行比较,我们提出,所提出的机制可能在细胞形态发生过程中设定长度尺度方面发挥重要作用。

相似文献

1
Providing positional information with active transport on dynamic microtubules.
Biophys J. 2010 Aug 4;99(3):726-35. doi: 10.1016/j.bpj.2010.05.026.
3
Force- and kinesin-8-dependent effects in the spatial regulation of fission yeast microtubule dynamics.
Mol Syst Biol. 2009;5:250. doi: 10.1038/msb.2009.5. Epub 2009 Mar 17.
4
Microtubules and associated molecular motors in Neurospora crassa.
Mycologia. 2016 May-Jun;108(3):515-27. doi: 10.3852/15-323. Epub 2016 Mar 7.
5
Stabilization of overlapping microtubules by fission yeast CLASP.
Dev Cell. 2007 Dec;13(6):812-27. doi: 10.1016/j.devcel.2007.10.015.
8
Force and length regulation in the microtubule cytoskeleton: lessons from fission yeast.
Curr Opin Cell Biol. 2010 Feb;22(1):21-8. doi: 10.1016/j.ceb.2009.12.011. Epub 2010 Jan 8.
9
Microtubule length regulation by molecular motors.
Phys Rev Lett. 2012 Jun 22;108(25):258104. doi: 10.1103/PhysRevLett.108.258104.
10
Establishing new sites of polarization by microtubules.
Curr Biol. 2009 Jan 27;19(2):83-94. doi: 10.1016/j.cub.2008.12.008. Epub 2009 Jan 15.

引用本文的文献

2
Determinants of Polar versus Nematic Organization in Networks of Dynamic Microtubules and Mitotic Motors.
Cell. 2018 Oct 18;175(3):796-808.e14. doi: 10.1016/j.cell.2018.09.029.
3
Metaphase kinetochore movements are regulated by kinesin-8 motors and microtubule dynamic instability.
Mol Biol Cell. 2018 Jun 1;29(11):1332-1345. doi: 10.1091/mbc.E17-11-0667. Epub 2018 Apr 5.
6
Motor Protein Accumulation on Antiparallel Microtubule Overlaps.
Biophys J. 2016 May 10;110(9):2034-43. doi: 10.1016/j.bpj.2016.03.039.
7
Delayed feedback model of axonal length sensing.
Biophys J. 2015 May 5;108(9):2408-19. doi: 10.1016/j.bpj.2015.03.055.
8
Feedback mechanism for microtubule length regulation by stathmin gradients.
Biophys J. 2014 Dec 16;107(12):2860-2871. doi: 10.1016/j.bpj.2014.10.056.
9
Biophysics of filament length regulation by molecular motors.
Phys Biol. 2013 Jun;10(3):036004. doi: 10.1088/1478-3975/10/3/036004. Epub 2013 Apr 16.

本文引用的文献

1
A theory of microtubule catastrophes and their regulation.
Proc Natl Acad Sci U S A. 2009 Dec 15;106(50):21173-8. doi: 10.1073/pnas.0910774106. Epub 2009 Nov 30.
2
Kinesin-8 motors act cooperatively to mediate length-dependent microtubule depolymerization.
Cell. 2009 Sep 18;138(6):1174-83. doi: 10.1016/j.cell.2009.07.032.
3
Microtubule depolymerization by the Kinesin-8 motor Kip3p: a mathematical model.
Biophys J. 2009 Apr 22;96(8):3050-64. doi: 10.1016/j.bpj.2009.01.017.
4
Force- and kinesin-8-dependent effects in the spatial regulation of fission yeast microtubule dynamics.
Mol Syst Biol. 2009;5:250. doi: 10.1038/msb.2009.5. Epub 2009 Mar 17.
5
6
Spatial regulation improves antiparallel microtubule overlap during mitotic spindle assembly.
Biophys J. 2008 Apr 1;94(7):2598-609. doi: 10.1529/biophysj.107.117671. Epub 2007 Dec 20.
7
Reconstitution of a microtubule plus-end tracking system in vitro.
Nature. 2007 Dec 13;450(7172):1100-5. doi: 10.1038/nature06386. Epub 2007 Dec 2.
8
Dynamic boundaries in asymmetric exclusion processes.
Phys Rev E Stat Nonlin Soft Matter Phys. 2007 Sep;76(3 Pt 1):031135. doi: 10.1103/PhysRevE.76.031135. Epub 2007 Sep 27.
9
Microtubules offset growth site from the cell centre in fission yeast.
J Cell Sci. 2007 Jul 1;120(Pt 13):2205-13. doi: 10.1242/jcs.03464.
10
The human kinesin Kif18A is a motile microtubule depolymerase essential for chromosome congression.
Curr Biol. 2007 Mar 20;17(6):488-98. doi: 10.1016/j.cub.2007.02.036. Epub 2007 Mar 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验