The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany.
Cell. 2018 Oct 18;175(3):796-808.e14. doi: 10.1016/j.cell.2018.09.029.
During cell division, mitotic motors organize microtubules in the bipolar spindle into either polar arrays at the spindle poles or a "nematic" network of aligned microtubules at the spindle center. The reasons for the distinct self-organizing capacities of dynamic microtubules and different motors are not understood. Using in vitro reconstitution experiments and computer simulations, we show that the human mitotic motors kinesin-5 KIF11 and kinesin-14 HSET, despite opposite directionalities, can both organize dynamic microtubules into either polar or nematic networks. We show that in addition to the motor properties the natural asymmetry between microtubule plus- and minus-end growth critically contributes to the organizational potential of the motors. We identify two control parameters that capture system composition and kinetic properties and predict the outcome of microtubule network organization. These results elucidate a fundamental design principle of spindle bipolarity and establish general rules for active filament network organization.
在细胞分裂过程中,有丝分裂马达将两极纺锤体中的微管组织成两极阵列或纺锤体中心的对齐微管的“向列”网络。对于动态微管和不同马达的独特自组织能力的原因尚不清楚。我们使用体外重组实验和计算机模拟表明,人类有丝分裂马达 kinesin-5 KIF11 和 kinesin-14 HSET,尽管具有相反的方向性,但都可以将动态微管组织成两极或向列网络。我们表明,除了马达特性之外,微管正端和负端生长之间的自然不对称性对于马达的组织潜力至关重要。我们确定了两个控制参数,它们可以捕获系统组成和动力学特性,并预测微管网络组织的结果。这些结果阐明了纺锤体两极化的基本设计原则,并为活性细丝网络组织建立了一般规则。