Suppr超能文献

细胞骨架重排驱动的红细胞膜卷曲和局部形状变化。

Curling and local shape changes of red blood cell membranes driven by cytoskeletal reorganization.

机构信息

Department of Chemical Physics, Weizmann Institute of Science, Rehovot, Israel.

出版信息

Biophys J. 2010 Aug 4;99(3):808-16. doi: 10.1016/j.bpj.2010.04.067.

Abstract

Human red blood cells (RBCs) lack the actin-myosin-microtubule cytoskeleton that is responsible for shape changes in other cells. Nevertheless, they can display highly dynamic local deformations in response to external perturbations, such as those that occur during the process of apical alignment preceding merozoite invasion in malaria. Moreover, after lysis in divalent cation-free media, the isolated membranes of ruptured ghosts show spontaneous inside-out curling motions at the free edges of the lytic hole, leading to inside-out vesiculation. The molecular mechanisms that drive these rapid shape changes are unknown. Here, we propose a molecular model in which the spectrin filaments of the RBC cortical cytoskeleton control the sign and dynamics of membrane curvature depending on whether the ends of the filaments are free or anchored to the bilayer. Computer simulations of the model reveal that curling, as experimentally observed, can be obtained either by an overall excess of weakly-bound filaments throughout the cell, or by the flux of such filaments toward the curling edges. Divalent cations have been shown to arrest the curling process, and Ca2+ ions have also been implicated in local membrane deformations during merozoite invasion. These effects can be replicated in our model by attributing the divalent cation effects to increased filament-membrane binding. This process converts the curl-inducing loose filaments into fully bound filaments that arrest curling. The same basic mechanism can be shown to account for Ca2+-induced local and dynamic membrane deformations in intact RBCs. The implications of these results in terms of RBC membrane dynamics under physiological, pathological, and experimental conditions is discussed.

摘要

人类红细胞 (RBC) 缺乏负责其他细胞形态变化的肌动蛋白-肌球蛋白-微管细胞骨架。然而,它们可以对外部干扰做出高度动态的局部变形,例如在疟疾中裂殖子入侵之前的顶端对齐过程中发生的那些干扰。此外,在无二价阳离子的介质中裂解后,破裂的幽灵的分离膜在裂解孔的自由边缘显示自发的内翻卷曲运动,导致内翻泡囊化。驱动这些快速形状变化的分子机制尚不清楚。在这里,我们提出了一个分子模型,其中 RBC 皮质细胞骨架的血影蛋白丝根据丝的末端是自由的还是锚定在双层上,控制膜曲率的符号和动力学。该模型的计算机模拟表明,卷曲可以通过整个细胞中大量弱结合的丝来实现,或者通过这些丝流向卷曲边缘来实现,这与实验观察到的情况一致。已经表明二价阳离子可以阻止卷曲过程,并且 Ca2+离子也与裂殖子入侵期间的局部膜变形有关。通过将二价阳离子的作用归因于增加的丝-膜结合,可以在我们的模型中复制这些效果。该过程将诱导卷曲的疏松丝转化为完全结合的丝,从而阻止卷曲。相同的基本机制可以解释完整 RBC 中 Ca2+诱导的局部和动态膜变形。讨论了这些结果在生理、病理和实验条件下对 RBC 膜动力学的影响。

相似文献

1
Curling and local shape changes of red blood cell membranes driven by cytoskeletal reorganization.
Biophys J. 2010 Aug 4;99(3):808-16. doi: 10.1016/j.bpj.2010.04.067.
2
Dynamic morphology and cytoskeletal protein changes during spontaneous inside-out vesiculation of red blood cell membranes.
Pflugers Arch. 2014 Dec;466(12):2279-88. doi: 10.1007/s00424-014-1483-5. Epub 2014 Mar 12.
3
Interaction of divalent cations with human red cell cytoskeletons.
Biochim Biophys Acta. 1980 Jul 16;600(1):140-9. doi: 10.1016/0005-2736(80)90419-8.
4
Myosin IIA interacts with the spectrin-actin membrane skeleton to control red blood cell membrane curvature and deformability.
Proc Natl Acad Sci U S A. 2018 May 8;115(19):E4377-E4385. doi: 10.1073/pnas.1718285115. Epub 2018 Apr 2.
5
Surface model of the human red blood cell simulating changes in membrane curvature under strain.
Sci Rep. 2021 Jul 1;11(1):13712. doi: 10.1038/s41598-021-92699-7.
6
Spectrin and Other Membrane-Skeletal Components in Human Red Blood Cells of Different Age.
Cell Physiol Biochem. 2017;42(3):1139-1152. doi: 10.1159/000478769. Epub 2017 Jun 30.
7
Vesiculation of healthy and defective red blood cells.
Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Jul;92(1):012715. doi: 10.1103/PhysRevE.92.012715. Epub 2015 Jul 21.
9
Nanoscale dynamics of actin filaments in the red blood cell membrane skeleton.
Mol Biol Cell. 2022 Mar 1;33(3):ar28. doi: 10.1091/mbc.E21-03-0107. Epub 2022 Jan 12.
10
Red blood cell membrane fluctuations and shape controlled by ATP-induced cytoskeletal defects.
Biophys J. 2005 Mar;88(3):1859-74. doi: 10.1529/biophysj.104.045328. Epub 2004 Dec 21.

引用本文的文献

1
Curvature-Assisted Vesicle Explosion Under Light-Induced Asymmetric Oxidation.
Adv Sci (Weinh). 2024 Oct;11(38):e2400504. doi: 10.1002/advs.202400504. Epub 2024 Aug 13.
2
Proteomes of plasmodium knowlesi early and late ring-stage parasites and infected host erythrocytes.
J Proteomics. 2024 Jun 30;302:105197. doi: 10.1016/j.jprot.2024.105197. Epub 2024 May 15.
3
Effective cell membrane tension protects red blood cells against malaria invasion.
PLoS Comput Biol. 2023 Dec 4;19(12):e1011694. doi: 10.1371/journal.pcbi.1011694. eCollection 2023 Dec.
4
Biophysical Tools and Concepts Enable Understanding of Asexual Blood Stage Malaria.
Front Cell Infect Microbiol. 2022 May 31;12:908241. doi: 10.3389/fcimb.2022.908241. eCollection 2022.
5
Red Blood Cell Extracellular Vesicle-Based Drug Delivery: Challenges and Opportunities.
Front Med (Lausanne). 2021 Dec 24;8:761362. doi: 10.3389/fmed.2021.761362. eCollection 2021.
6
Host Cytoskeleton Remodeling throughout the Blood Stages of Plasmodium falciparum.
Microbiol Mol Biol Rev. 2019 Sep 4;83(4). doi: 10.1128/MMBR.00013-19. Print 2019 Nov 20.
7
The noisy basis of morphogenesis: Mechanisms and mechanics of cell sheet folding inferred from developmental variability.
PLoS Biol. 2018 Jul 12;16(7):e2005536. doi: 10.1371/journal.pbio.2005536. eCollection 2018 Jul.
8
Contribution of plasma membrane lipid domains to red blood cell (re)shaping.
Sci Rep. 2017 Jun 27;7(1):4264. doi: 10.1038/s41598-017-04388-z.
9
The mechanical properties of stored red blood cells measured by a convenient microfluidic approach combining with mathematic model.
Biomicrofluidics. 2016 Mar 11;10(2):024104. doi: 10.1063/1.4943861. eCollection 2016 Mar.
10
Role of band 3 in the erythrocyte membrane structural changes under thermal fluctuations -multi scale modeling considerations.
J Bioenerg Biomembr. 2015 Dec;47(6):507-18. doi: 10.1007/s10863-015-9633-9. Epub 2015 Nov 11.

本文引用的文献

1
Dynamic morphology and cytoskeletal protein changes during spontaneous inside-out vesiculation of red blood cell membranes.
Pflugers Arch. 2014 Dec;466(12):2279-88. doi: 10.1007/s00424-014-1483-5. Epub 2014 Mar 12.
2
Budding and vesiculation induced by conical membrane inclusions.
Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Sep;80(3 Pt 1):031901. doi: 10.1103/PhysRevE.80.031901. Epub 2009 Sep 3.
3
Integral membrane proteins in nanodiscs can be studied by solution NMR spectroscopy.
J Am Chem Soc. 2009 Sep 2;131(34):12060-1. doi: 10.1021/ja904897p.
4
Bursting of sensitive polymersomes induced by curling.
Proc Natl Acad Sci U S A. 2009 May 5;106(18):7294-8. doi: 10.1073/pnas.0813157106. Epub 2009 Apr 21.
6
Morphology and kinetics of the three distinct phases of red blood cell invasion by Plasmodium falciparum merozoites.
Int J Parasitol. 2009 Jan;39(1):91-6. doi: 10.1016/j.ijpara.2008.09.007. Epub 2008 Oct 11.
7
Hydrophilic alcohol ethoxylates as efficiency boosters for microemulsions.
Langmuir. 2008 Jun 17;24(12):6036-43. doi: 10.1021/la800360m. Epub 2008 May 24.
8
Fluctuations of coupled fluid and solid membranes with application to red blood cells.
Phys Rev E Stat Nonlin Soft Matter Phys. 2007 Nov;76(5 Pt 1):051910. doi: 10.1103/PhysRevE.76.051910. Epub 2007 Nov 12.
9
Is invasion efficiency in malaria controlled by pre-invasion events?
Trends Parasitol. 2007 Oct;23(10):481-4. doi: 10.1016/j.pt.2007.08.001. Epub 2007 Sep 4.
10
Phase transitions of the coupled membrane-cytoskeleton modify cellular shape.
Biophys J. 2007 Dec 1;93(11):3798-810. doi: 10.1529/biophysj.107.113282. Epub 2007 Aug 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验