Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA.
Department of Mechanical Engineering and Department of Applied Mathematics, Santa Clara University, Santa Clara, CA, 95053, USA.
Adv Sci (Weinh). 2024 Oct;11(38):e2400504. doi: 10.1002/advs.202400504. Epub 2024 Aug 13.
Exposure of cell membranes to reactive oxygen species can cause oxidation of membrane lipids. Oxidized lipids undergo drastic conformational changes, compromising the mechanical integrity of the membrane and causing cell death. For giant unilamellar vesicles, a classic cell mimetic system, a range of mechanical responses under oxidative assault has been observed including formation of nanopores, transient micron-sized pores, and total sudden catastrophic collapse (i.e., explosion). However, the physical mechanism regarding how lipid oxidation causes vesicles to explode remains elusive. Here, with light-induced asymmetric oxidation experiments, the role of spontaneous curvature on vesicle instability and its link to the conformational changes of oxidized lipid products is systematically investigated. A comprehensive membrane model is proposed for pore-opening dynamics incorporating spontaneous curvature and membrane curling, which captures the experimental observations well. The kinetics of lipid oxidation are further characterized and how light-induced asymmetric oxidation generates spontaneous curvature in a non-monotonic temporal manner is rationalized. Using the framework, a phase diagram with an analytical criterion to predict transient pore formation or catastrophic vesicle collapse is provided. The work can shed light on understanding biomembrane stability under oxidative assault and strategizing release dynamics of vesicle-based drug delivery systems.
细胞膜暴露于活性氧物种会导致膜脂氧化。氧化的脂质会发生剧烈的构象变化,破坏膜的机械完整性并导致细胞死亡。对于巨单层囊泡这种典型的细胞模拟系统,在氧化攻击下已经观察到一系列机械响应,包括纳米孔的形成、短暂的微米大小的孔和完全突然的灾难性崩溃(即爆炸)。然而,脂质氧化如何导致囊泡爆炸的物理机制仍然难以捉摸。在这里,通过光诱导的不对称氧化实验,系统研究了自发曲率在囊泡不稳定性中的作用及其与氧化脂质产物构象变化的关系。提出了一个综合的膜模型来描述孔开启动力学,其中包括自发曲率和膜卷曲,该模型很好地捕捉了实验观察结果。进一步对脂质氧化动力学进行了表征,并解释了光诱导的不对称氧化如何以非单调的时间方式产生自发曲率。利用该框架,提供了一个具有分析判据的相图来预测瞬态孔形成或灾难性囊泡崩溃。这项工作可以帮助我们理解生物膜在氧化攻击下的稳定性,并为基于囊泡的药物输送系统的释放动力学提供策略。