Suppr超能文献

充分统计量作为谱 X 射线成象中方格法的推广

Sufficient statistics as a generalization of binning in spectral X-ray imaging.

机构信息

Departments of Electrical Engineering and Radiology, Stanford University, Stanford, CA 94305, USA.

出版信息

IEEE Trans Med Imaging. 2011 Jan;30(1):84-93. doi: 10.1109/TMI.2010.2061862. Epub 2010 Aug 3.

Abstract

It is well known that the energy dependence of X-ray attenuation can be used to characterize materials. Yet, even with energy discriminating photon counting X-ray detectors, it is still unclear how to best form energy dependent measurements for spectral imaging. Common ideas include binning photon counts based on their energies and detectors with both photon counting and energy integrating electronics. These approaches can be generalized to energy weighted measurements, which we prove can form a sufficient statistic for spectral X-ray imaging if the weights used, which we term μ-weights, are basis attenuation functions that can also be used for material decomposition. To study the performance of these different methods, we evaluate the Cramér-Rao lower bound (CRLB) of material estimates in the presence of quantum noise. We found that the choice of binning and weighting schemes can greatly affect the performance of material decomposition. Even with optimized thresholds, binning condenses information but incurs penalties to decomposition precision and is not robust to changes in the source spectrum or object size, although this can be mitigated by adding more bins or removing photons of certain energies from the spectrum. On the other hand, because μ-weighted measurements form a sufficient statistic for spectral imaging, the CRLB of the material decomposition estimates is identical to the quantum noise limited performance of a system with complete energy information of all photons. Finally, we show that μ-weights lead to increased conspicuity over other methods in a simulated calcium contrast experiment.

摘要

众所周知,X 射线衰减的能量依赖性可用于物质特征化。然而,即使使用具有能量分辨光子计数的 X 射线探测器,仍然不清楚如何最佳地形成用于光谱成象的能量相关测量。常见的想法包括根据光子的能量对其进行计数,并使用具有光子计数和能量积分电子学的探测器。这些方法可以推广到能量加权测量,如果使用的权重(我们称之为 μ 权重)是可以用于材料分解的基础衰减函数,则我们证明这些权重可以形成光谱 X 射线成象的充分统计量。为了研究这些不同方法的性能,我们在存在量子噪声的情况下评估材料估计的克拉美罗下限(CRLB)。我们发现,分箱和加权方案的选择会极大地影响材料分解的性能。即使使用优化的阈值,分箱也会压缩信息,但会对分解精度造成损失,并且对源谱或物体尺寸的变化不稳健,尽管通过添加更多的箱或从光谱中去除某些能量的光子可以减轻这种情况。另一方面,因为 μ 加权测量对于光谱成象形成了充分统计量,所以材料分解估计的 CRLB 与具有所有光子完整能量信息的系统的量子噪声限制性能相同。最后,我们在模拟的钙对比实验中表明,μ 权重比其他方法在提高对比度方面更有效。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验