Suppr超能文献

全谱 X 射线计算机断层扫描的特征向量分解。

Eigenvector decomposition of full-spectrum x-ray computed tomography.

机构信息

Joint Department of Biomedical Engineering, North Carolina State University and The University of North Carolina at Chapel Hill, Campus Box 7115, Raleigh, NC 27695-7115, USA.

出版信息

Phys Med Biol. 2012 Mar 7;57(5):1309-23. doi: 10.1088/0031-9155/57/5/1309. Epub 2012 Feb 17.

Abstract

Energy-discriminated x-ray computed tomography (CT) data were projected onto a set of basis functions to suppress the noise in filtered back-projection (FBP) reconstructions. The x-ray CT data were acquired using a novel x-ray system which incorporated a single-pixel photon-counting x-ray detector to measure the x-ray spectrum for each projection ray. A matrix of the spectral response of different materials was decomposed using eigenvalue decomposition to form the basis functions. Projection of FBP onto basis functions created a de facto image segmentation of multiple contrast agents. Final reconstructions showed significant noise suppression while preserving important energy-axis data. The noise suppression was demonstrated by a marked improvement in the signal-to-noise ratio (SNR) along the energy axis for multiple regions of interest in the reconstructed images. Basis functions used on a more coarsely sampled energy axis still showed an improved SNR. We conclude that the noise-resolution trade off along the energy axis was significantly improved using the eigenvalue decomposition basis functions.

摘要

能量分辨 X 射线计算机断层扫描(CT)数据被投影到一组基函数上,以抑制滤波反投影(FBP)重建中的噪声。X 射线 CT 数据是使用一种新型 X 射线系统采集的,该系统结合了单像素光子计数 X 射线探测器,用于测量每个投影射线的 X 射线光谱。使用特征值分解对不同材料的光谱响应矩阵进行分解,形成基函数。将 FBP 投影到基函数上,创建了多个对比剂的实际图像分割。最终的重建结果显示出显著的噪声抑制,同时保留了重要的能量轴数据。通过在重建图像中多个感兴趣区域的能量轴上信噪比(SNR)的显著提高,证明了噪声抑制效果。在更粗糙的能量轴上使用的基函数仍然显示出 SNR 的提高。我们得出结论,使用特征值分解基函数显著改善了沿能量轴的噪声分辨率权衡。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验