Department of Physics and Astronomy, University of Canterbury, Christchurch, New Zealand.
Phys Med Biol. 2011 Sep 21;56(18):5969-83. doi: 10.1088/0031-9155/56/18/012. Epub 2011 Aug 22.
Spectral x-ray imaging using novel photon counting x-ray detectors (PCDs) with energy resolving abilities is capable of providing energy-selective images. PCDs have energy thresholds, enabling the classification of photons into multiple energy bins. The extra energy information provided may allow materials such as iodine and calcium, or water and fat to be distinguishable. The information content of spectral x-ray images, however, depends on how the photons are grouped together. In this work, we present a model to optimize energy windows for maximum material discrimination. Multivariate statistics allows the confidence region of the correlated uncertainties to be mapped in the thickness space. Minimization of the uncertainties enables optimization of energy windows. Applications related to small animal imaging and breast imaging are considered.
利用具有能量分辨能力的新型光子计数 X 射线探测器(PCD)进行光谱 X 射线成像是能够提供能量选择图像的。PCD 具有能量阈值,能够将光子分类到多个能量bins 中。提供的额外能量信息可能允许区分碘和钙等物质,或水和脂肪等物质。然而,光谱 X 射线图像的信息含量取决于如何将光子分组。在这项工作中,我们提出了一个模型来优化能量窗口以实现最大的材料区分。多变量统计允许在厚度空间中映射相关不确定性的置信区域。不确定性的最小化能够实现能量窗口的优化。考虑了与小动物成像和乳房成像相关的应用。