Division of Neurology/Molecular Brain Science, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan.
J Biol Chem. 2010 Oct 8;285(41):31208-16. doi: 10.1074/jbc.M110.116343. Epub 2010 Aug 3.
Pikachurin, the most recently identified ligand of dystroglycan, plays a crucial role in the formation of the photoreceptor ribbon synapse. It is known that glycosylation of dystroglycan is necessary for its ligand binding activity, and hypoglycosylation is associated with a group of muscular dystrophies that often involve eye abnormalities. Because little is known about the interaction between pikachurin and dystroglycan and its impact on molecular pathogenesis, here we characterize the interaction using deletion constructs and mouse models of muscular dystrophies with glycosylation defects (Large(myd) and POMGnT1-deficient mice). Pikachurin-dystroglycan binding is calcium-dependent and relatively less sensitive to inhibition by heparin and high NaCl concentration, as compared with other dystroglycan ligand proteins. Using deletion constructs of the laminin globular domains in the pikachurin C terminus, we show that a certain steric structure formed by the second and the third laminin globular domains is necessary for the pikachurin-dystroglycan interaction. Binding assays using dystroglycan deletion constructs and tissue samples from Large-deficient (Large(myd)) mice show that Large-dependent modification of dystroglycan is necessary for pikachurin binding. In addition, the ability of pikachurin to bind to dystroglycan prepared from POMGnT1-deficient mice is severely reduced, suggesting that modification of the GlcNAc-β1,2-branch on O-mannose is also necessary for the interaction. Immunofluorescence analysis reveals a disruption of pikachurin localization in the photoreceptor ribbon synapse of these model animals. Together, our data demonstrate that post-translational modification on O-mannose, which is mediated by Large and POMGnT1, is essential for pikachurin binding and proper localization, and suggest that their disruption underlies the molecular pathogenesis of eye abnormalities in a group of muscular dystrophies.
皮卡楚林是最近被鉴定出的与营养不良蛋白聚糖相互作用的配体,在光感受器带突触的形成中起着至关重要的作用。已知营养不良蛋白聚糖的糖基化对于其配体结合活性是必需的,而低聚糖基化与一组常伴有眼部异常的肌肉营养不良症有关。由于人们对皮卡楚林与营养不良蛋白聚糖的相互作用及其对分子发病机制的影响知之甚少,我们在这里使用缺失构建体和糖基化缺陷的肌肉营养不良症小鼠模型(Large(myd)和 POMGnT1 缺陷型小鼠)来描述其相互作用。与其他营养不良蛋白聚糖配体蛋白相比,皮卡楚林与营养不良蛋白聚糖的结合是钙离子依赖性的,对肝素和高氯化钠浓度的抑制作用相对不敏感。通过皮卡楚林 C 末端层粘连蛋白球状结构域的缺失构建体,我们表明由第二和第三个层粘连蛋白球状结构域形成的特定空间结构对于皮卡楚林与营养不良蛋白聚糖的相互作用是必需的。使用营养不良蛋白聚糖缺失构建体和来自 Large 缺陷型(Large(myd))小鼠的组织样本进行的结合实验表明,依赖于 Large 的营养不良蛋白聚糖的修饰对于皮卡楚林的结合是必需的。此外,来自 POMGnT1 缺陷型小鼠的皮卡楚林与营养不良蛋白聚糖的结合能力严重降低,表明 O-甘露糖上 GlcNAc-β1,2 分支的修饰对于相互作用也是必需的。免疫荧光分析显示,这些模型动物的光感受器带突触中的皮卡楚林定位受到破坏。总之,我们的数据表明,由 Large 和 POMGnT1 介导的 O-甘露糖的翻译后修饰对于皮卡楚林的结合和正确定位是必需的,并且表明它们的破坏是一组肌肉营养不良症中眼部异常的分子发病机制的基础。