Department of Mechanical Engineering, Center for Biomedical Engineering Research, University of Delaware, 126 Spencer Laboratory, Newark, DE 19716, USA.
Ann Biomed Eng. 2011 Jan;39(1):110-21. doi: 10.1007/s10439-010-0131-2. Epub 2010 Aug 4.
The purpose of this study was to develop a biomechanical model to estimate anterior tibial translation (ATT), anterior shear forces, and ligament loading in the healthy and anterior cruciate ligament (ACL)-deficient knee joint during gait. This model used electromyography (EMG), joint position, and force plate data as inputs to calculate ligament loading during stance phase. First, an EMG-driven model was used to calculate forces for the major muscles crossing the knee joint. The calculated muscle forces were used as inputs to a knee model that incorporated a knee-ligament model in order to solve for ATT and ligament forces. The model took advantage of using EMGs as inputs, and could account for the abnormal muscle activation patterns of ACL-deficient gait. We validated our model by comparing the calculated results with previous in vitro, in vivo, and numerical studies of healthy and ACL-deficient knees, and this gave us confidence on the accuracy of our model calculations. Our model predicted that ATT increased throughout stance phase for the ACL-deficient knee compared with the healthy knee. The medial collateral ligament functioned as the main passive restraint to anterior shear force in the ACL-deficient knee. Although strong co-contraction of knee flexors was found to help restrain ATT in the ACL-deficient knee, it did not counteract the effect of ACL rupture. Posterior inclination angle of the tibial plateau was found to be a crucial parameter in determining knee mechanics, and increasing the tibial slope inclination in our model would increase the resulting ATT and ligament forces in both healthy and ACL-deficient knees.
本研究旨在建立一个生物力学模型,以估计健康和前交叉韧带(ACL)缺失膝关节在步态中的胫骨前平移(ATT)、前向剪切力和韧带负荷。该模型使用肌电图(EMG)、关节位置和力板数据作为输入,以计算站立相期间的韧带负荷。首先,使用肌电图驱动的模型来计算穿过膝关节的主要肌肉的力。计算出的肌肉力被用作膝关节模型的输入,该模型包含一个膝关节韧带模型,以求解 ATT 和韧带力。该模型利用 EMG 作为输入,可以考虑 ACL 缺失步态的异常肌肉激活模式。我们通过将计算结果与健康和 ACL 缺失膝关节的先前体外、体内和数值研究进行比较来验证我们的模型,这使我们对模型计算的准确性有信心。我们的模型预测,与健康膝关节相比,ACL 缺失膝关节在整个站立相期间 ATT 增加。内侧副韧带在 ACL 缺失膝关节中作为前向剪切力的主要被动约束。尽管在 ACL 缺失膝关节中发现强烈的膝关节屈肌共同收缩有助于限制 ATT,但它不能抵消 ACL 断裂的影响。胫骨平台的后倾角度是决定膝关节力学的关键参数,在我们的模型中增加胫骨斜率倾斜度会增加健康和 ACL 缺失膝关节的 ATT 和韧带力。