Suppr超能文献

幂律动力学在听觉神经模型中可以解释神经对声音水平统计数据的适应。

Power-law dynamics in an auditory-nerve model can account for neural adaptation to sound-level statistics.

机构信息

Department of Biomedical Engineering, University of Rochester, Rochester, New York 14642, USA.

出版信息

J Neurosci. 2010 Aug 4;30(31):10380-90. doi: 10.1523/JNEUROSCI.0647-10.2010.

Abstract

Neurons in the auditory system respond to recent stimulus-level history by adapting their response functions according to the statistics of the stimulus, partially alleviating the so-called "dynamic-range problem." However, the mechanism and source of this adaptation along the auditory pathway remain unknown. Inclusion of power-law dynamics in a phenomenological model of the inner hair cell (IHC)-auditory nerve (AN) synapse successfully explained neural adaptation to sound-level statistics, including the time course of adaptation of the mean firing rate and changes in the dynamic range observed in AN responses. A direct comparison between model responses to a dynamic stimulus and to an "inversely gated" static background suggested that AN dynamic-range adaptation largely results from the adaptation produced by the response history. These results support the hypothesis that the potential mechanism underlying the dynamic-range adaptation observed at the level of the auditory nerve is located peripheral to the spike generation mechanism and central to the IHC receptor potential.

摘要

听觉系统中的神经元通过根据刺激的统计数据来调整其响应函数,从而对近期的刺激水平历史做出响应,部分缓解了所谓的“动态范围问题”。然而,这种听觉通路中的适应的机制和来源仍然未知。在毛细胞(IHC)-听觉神经(AN)突触的现象学模型中包含幂律动力学,成功地解释了对声音水平统计数据的神经适应,包括平均发放率的适应时间过程和在 AN 反应中观察到的动态范围的变化。将模型对动态刺激的响应与“反向门控”静态背景的响应进行直接比较表明,AN 动态范围适应主要是由响应历史产生的适应引起的。这些结果支持了这样的假设,即在听觉神经水平观察到的动态范围适应的潜在机制位于尖峰产生机制的外围,而位于 IHC 受体电位的中心。

相似文献

1
Power-law dynamics in an auditory-nerve model can account for neural adaptation to sound-level statistics.
J Neurosci. 2010 Aug 4;30(31):10380-90. doi: 10.1523/JNEUROSCI.0647-10.2010.
2
Dynamic range adaptation to sound level statistics in the auditory nerve.
J Neurosci. 2009 Nov 4;29(44):13797-808. doi: 10.1523/JNEUROSCI.5610-08.2009.
3
Towards a unifying basis of auditory thresholds: distributions of the first-spike latencies of auditory-nerve fibers.
Hear Res. 2008 Apr;238(1-2):25-38. doi: 10.1016/j.heares.2007.09.014. Epub 2007 Nov 9.
4
Adaptation reduces spike-count reliability, but not spike-timing precision, of auditory nerve responses.
J Neurosci. 2007 Jun 13;27(24):6461-72. doi: 10.1523/JNEUROSCI.5239-06.2007.
6
Cochlear processes reflected in responses of the cochlear nerve.
Acta Otolaryngol. 1985 Jul-Aug;100(1-2):1-12. doi: 10.3109/00016488509108580.
8
Incorporating Midbrain Adaptation to Mean Sound Level Improves Models of Auditory Cortical Processing.
J Neurosci. 2016 Jan 13;36(2):280-9. doi: 10.1523/JNEUROSCI.2441-15.2016.
9
A simple model of the inner-hair-cell ribbon synapse accounts for mammalian auditory-nerve-fiber spontaneous spike times.
Hear Res. 2018 Jun;363:1-27. doi: 10.1016/j.heares.2017.09.005. Epub 2017 Sep 15.
10
Constructing noise-invariant representations of sound in the auditory pathway.
PLoS Biol. 2013 Nov;11(11):e1001710. doi: 10.1371/journal.pbio.1001710. Epub 2013 Nov 12.

引用本文的文献

1
Adaptation to Noise in Spectrotemporal Modulation Detection and Word Recognition.
Trends Hear. 2024 Jan-Dec;28:23312165241266322. doi: 10.1177/23312165241266322.
3
Peristimulus Time Responses Predict Adaptation and Spontaneous Firing of Auditory-Nerve Fibers: From Rodents Data to Humans.
J Neurosci. 2022 Mar 16;42(11):2253-2267. doi: 10.1523/JNEUROSCI.0858-21.2022. Epub 2022 Jan 25.
4
The role of the medial olivocochlear reflex in psychophysical masking and intensity resolution in humans: a review.
J Neurophysiol. 2021 Jun 1;125(6):2279-2308. doi: 10.1152/jn.00672.2020. Epub 2021 Apr 28.
5
Auditory Brainstem Models: Adapting Cochlear Nuclei Improve Spatial Encoding by the Medial Superior Olive in Reverberation.
J Assoc Res Otolaryngol. 2021 Jun;22(3):289-318. doi: 10.1007/s10162-021-00797-0. Epub 2021 Apr 16.
7
Tinnitus and hyperacusis: Central noise, gain and variance.
Curr Opin Physiol. 2020 Dec;18:123-129. doi: 10.1016/j.cophys.2020.10.009. Epub 2020 Nov 13.
8
Simple transformations capture auditory input to cortex.
Proc Natl Acad Sci U S A. 2020 Nov 10;117(45):28442-28451. doi: 10.1073/pnas.1922033117. Epub 2020 Oct 23.
9
Cooperative population coding facilitates efficient sound-source separability by adaptation to input statistics.
PLoS Biol. 2019 Jul 29;17(7):e3000150. doi: 10.1371/journal.pbio.3000150. eCollection 2019 Jul.
10
Adaptation in the auditory system of a beluga whale: effect of adapting sound parameters.
J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2019 Oct;205(5):707-715. doi: 10.1007/s00359-019-01358-w. Epub 2019 Jul 6.

本文引用的文献

2
Dynamic range adaptation to sound level statistics in the auditory nerve.
J Neurosci. 2009 Nov 4;29(44):13797-808. doi: 10.1523/JNEUROSCI.5610-08.2009.
3
Input normalization by global feedforward inhibition expands cortical dynamic range.
Nat Neurosci. 2009 Dec;12(12):1577-85. doi: 10.1038/nn.2441. Epub 2009 Nov 1.
4
Specialized neuronal adaptation for preserving input sensitivity.
Nat Neurosci. 2008 Nov;11(11):1259-61. doi: 10.1038/nn.2201. Epub 2008 Sep 28.
5
Rapid neural adaptation to sound level statistics.
J Neurosci. 2008 Jun 18;28(25):6430-8. doi: 10.1523/JNEUROSCI.0470-08.2008.
6
The power law of sensory adaptation: simulation by a model of excitability in spider mechanoreceptor neurons.
Ann Biomed Eng. 2008 Jan;36(1):153-61. doi: 10.1007/s10439-007-9392-9. Epub 2007 Oct 19.
7
Time course and calcium dependence of transmitter release at a single ribbon synapse.
Proc Natl Acad Sci U S A. 2007 Oct 9;104(41):16341-6. doi: 10.1073/pnas.0705756104. Epub 2007 Oct 2.
9
Changes across time in spike rate and spike amplitude of auditory nerve fibers stimulated by electric pulse trains.
J Assoc Res Otolaryngol. 2007 Sep;8(3):356-72. doi: 10.1007/s10162-007-0086-7. Epub 2007 Jun 12.
10
Olivocochlear efferents: anatomy, physiology, function, and the measurement of efferent effects in humans.
Ear Hear. 2006 Dec;27(6):589-607. doi: 10.1097/01.aud.0000240507.83072.e7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验