Department of Linguistics, and the Australian Hearing Hub, Macquarie University, Macquarie Park, New South Wales, Australia.
Department of Biomedical Engineering, Boston University, Boston, Massachusetts, USA.
J Assoc Res Otolaryngol. 2021 Jun;22(3):289-318. doi: 10.1007/s10162-021-00797-0. Epub 2021 Apr 16.
Listeners typically perceive a sound as originating from the direction of its source, even as direct sound is followed milliseconds later by reflected sound from multiple different directions. Early-arriving sound is emphasised in the ascending auditory pathway, including the medial superior olive (MSO) where binaural neurons encode the interaural-time-difference (ITD) cue for spatial location. Perceptually, weighting of ITD conveyed during rising sound energy is stronger at 600 Hz than at 200 Hz, consistent with the minimum stimulus rate for binaural adaptation, and with the longer reverberation times at 600 Hz, compared with 200 Hz, in many natural outdoor environments. Here, we computationally explore the combined efficacy of adaptation prior to the binaural encoding of ITD cues, and excitatory binaural coincidence detection within MSO neurons, in emphasising ITDs conveyed in early-arriving sound. With excitatory inputs from adapting, nonlinear model spherical bushy cells (SBCs) of the bilateral cochlear nuclei, a nonlinear model MSO neuron with low-threshold potassium channels reproduces the rate-dependent emphasis of rising vs. peak sound energy in ITD encoding; adaptation is equally effective in the model MSO. Maintaining adaptation in model SBCs, and adjusting membrane speed in model MSO neurons, 'left' and 'right' populations of computationally efficient, linear model SBCs and MSO neurons reproduce this stronger weighting of ITD conveyed during rising sound energy at 600 Hz compared to 200 Hz. This hemispheric population model demonstrates a link between strong weighting of spatial information during rising sound energy, and correct unambiguous lateralisation of a speech source in reverberation.
听众通常会将声音感知为源自其声源的方向,即使直接声音随后会被来自多个不同方向的反射声音在毫秒后跟随。早期到达的声音在上升的听觉通路中被强调,包括内侧上橄榄核 (MSO),其中双耳神经元对空间位置的耳间时间差 (ITD) 线索进行编码。在感知方面,与双耳适应的最小刺激率一致,与许多自然户外环境中 600Hz 的混响时间比 200Hz 长,在上升的声音能量中传递的 ITD 加权在 600Hz 时比在 200Hz 时更强。在这里,我们通过计算探索了双耳编码 ITD 线索之前的适应以及 MSO 神经元中的兴奋性双耳巧合检测相结合的效果,以强调早期到达声音中传递的 ITD。具有来自适应的兴奋性输入,双侧耳蜗核的非线性模型球形布什细胞 (SBC),具有低阈值钾通道的非线性模型 MSO 神经元再现了与峰值声音能量相比,上升声音能量中 ITD 编码的速率依赖性强调;适应在模型 MSO 中同样有效。在模型 SBC 中保持适应,并调整模型 MSO 神经元中的膜速度,计算效率高的线性模型 SBC 和 MSO 神经元的“左”和“右”群体再现了在 600Hz 时与在 200Hz 时相比,在上升声音能量中传递的 ITD 更强的加权。该半球群体模型证明了在上升声音能量期间对空间信息的强烈加权与在混响中正确明确地对语音源进行侧化之间的联系。