Suppr超能文献

人们能够有效地探索计算上难以处理的旅行商问题的解空间,以找到接近最优的旅行路线。

People efficiently explore the solution space of the computationally intractable traveling salesman problem to find near-optimal tours.

机构信息

Department of Computer Science and Engineering and Center for Cognitive Sciences, University of Minnesota, Minneapolis, Minnesota, United States of America.

出版信息

PLoS One. 2010 Jul 29;5(7):e11685. doi: 10.1371/journal.pone.0011685.

Abstract

Humans need to solve computationally intractable problems such as visual search, categorization, and simultaneous learning and acting, yet an increasing body of evidence suggests that their solutions to instantiations of these problems are near optimal. Computational complexity advances an explanation to this apparent paradox: (1) only a small portion of instances of such problems are actually hard, and (2) successful heuristics exploit structural properties of the typical instance to selectively improve parts that are likely to be sub-optimal. We hypothesize that these two ideas largely account for the good performance of humans on computationally hard problems. We tested part of this hypothesis by studying the solutions of 28 participants to 28 instances of the Euclidean Traveling Salesman Problem (TSP). Participants were provided feedback on the cost of their solutions and were allowed unlimited solution attempts (trials). We found a significant improvement between the first and last trials and that solutions are significantly different from random tours that follow the convex hull and do not have self-crossings. More importantly, we found that participants modified their current better solutions in such a way that edges belonging to the optimal solution ("good" edges) were significantly more likely to stay than other edges ("bad" edges), a hallmark of structural exploitation. We found, however, that more trials harmed the participants' ability to tell good from bad edges, suggesting that after too many trials the participants "ran out of ideas." In sum, we provide the first demonstration of significant performance improvement on the TSP under repetition and feedback and evidence that human problem-solving may exploit the structure of hard problems paralleling behavior of state-of-the-art heuristics.

摘要

人类需要解决计算上难以处理的问题,例如视觉搜索、分类以及同时学习和行动,但越来越多的证据表明,他们解决这些问题实例的方法接近最优。计算复杂性提出了一个解释这个明显悖论的理论:(1)这些问题的实例中只有一小部分实际上是困难的,(2)成功的启发式方法利用典型实例的结构属性来选择性地改进可能不太理想的部分。我们假设这两个想法在很大程度上解释了人类在计算困难问题上的良好表现。我们通过研究 28 名参与者对 28 个欧几里得旅行商问题(TSP)实例的解决方案,验证了这个假设的一部分。参与者会收到他们解决方案成本的反馈,并允许他们进行无限次的解决方案尝试(试验)。我们发现,第一次和最后一次试验之间存在显著的改进,并且解决方案与遵循凸包且没有自交叉的随机旅行有明显的不同。更重要的是,我们发现参与者以这样一种方式修改了他们当前更好的解决方案,即属于最优解决方案的边(“好”边)比其他边(“坏”边)更有可能保留,这是结构利用的标志。然而,我们发现,更多的试验会损害参与者区分好坏边的能力,这表明在尝试太多次后,参与者“没有了新的想法”。总之,我们首次证明了在重复和反馈下,TSP 上的性能显著提高,并且证据表明人类解决问题的方法可能利用了困难问题的结构,与最先进的启发式方法的行为相似。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1a2f/2912227/c7b92dca86eb/pone.0011685.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验