Suppr超能文献

小分子发现融入学术生物医学研究。

Integration of small-molecule discovery in academic biomedical research.

作者信息

Ohlmeyer Michael, Zhou Ming-Ming

机构信息

Department of Structural and Chemical Biology, Mount Sinai School of Medicine, New York, NY, USA.

出版信息

Mt Sinai J Med. 2010 Jul-Aug;77(4):350-7. doi: 10.1002/msj.20197.

Abstract

Rapid advances in biomedical sciences in recent years have drastically accelerated the discovery of the molecular basis of human diseases. The great challenge is how to translate the newly acquired knowledge into new medicine for disease prevention and treatment. Drug discovery is a long and expensive process, and the pharmaceutical industry has not been very successful at it, despite its enormous resources and spending on the process. It is increasingly realized that academic biomedical research institutions ought to be engaged in early-stage drug discovery, especially when it can be coupled to their basic research. To leverage the productivity of new-drug development, a substantial acceleration in validation of new therapeutic targets is required, which would require small molecules that can precisely control target functions in complex biological systems in a temporal and dose-dependent manner. In this review, we describe a process of integration of small-molecule discovery and chemistry in academic biomedical research that will ideally bring together the elements of innovative approaches to new molecular targets, existing basic and clinical research, screening infrastructure, and synthetic and medicinal chemistry to follow up on small-molecule hits. Such integration of multidisciplinary resources and expertise will enable academic investigators to discover novel small molecules that are expected to facilitate their efforts in both mechanistic research and new-drug target validation. More broadly academic drug discovery should contribute new entities to therapy for intractable human diseases, especially for orphan diseases, and hopefully stimulate and synergize with the commercial sector.

摘要

近年来,生物医学科学的飞速发展极大地加速了人类疾病分子基础的发现。巨大的挑战在于如何将新获得的知识转化为用于疾病预防和治疗的新药。药物研发是一个漫长且昂贵的过程,尽管制药行业在这个过程中投入了巨大的资源和资金,但成效并不显著。人们越来越意识到,学术性生物医学研究机构应该参与早期药物研发,尤其是当它能够与基础研究相结合的时候。为了提高新药开发的效率,需要大幅加快新治疗靶点的验证速度,这就需要能够在复杂生物系统中以时间和剂量依赖的方式精确控制靶点功能的小分子。在这篇综述中,我们描述了一种在学术性生物医学研究中整合小分子发现与化学的过程,理想情况下,这种过程将把针对新分子靶点的创新方法、现有的基础和临床研究、筛选基础设施以及合成与药物化学等要素结合起来,以跟进小分子活性物质。多学科资源和专业知识的这种整合将使学术研究人员能够发现新型小分子,有望促进他们在机制研究和新药靶点验证方面的工作。更广泛地说,学术性药物研发应该为治疗难治性人类疾病,特别是罕见病,贡献新的药物实体,并有望与商业部门形成刺激和协同效应。

相似文献

1
Integration of small-molecule discovery in academic biomedical research.
Mt Sinai J Med. 2010 Jul-Aug;77(4):350-7. doi: 10.1002/msj.20197.
2
UCSF Small Molecule Discovery Center: innovation, collaboration and chemical biology in the Bay Area.
Comb Chem High Throughput Screen. 2014 May;17(4):333-42. doi: 10.2174/1386207317666140323133841.
3
The role of HTS in drug discovery at the University of Michigan.
Comb Chem High Throughput Screen. 2014 Mar;17(3):210-30. doi: 10.2174/1386207317666140109121546.
5
Open access high throughput drug discovery in the public domain: a Mount Everest in the making.
Curr Pharm Biotechnol. 2010 Nov;11(7):764-78. doi: 10.2174/138920110792927757.
6
The Emory Chemical Biology Discovery Center: leveraging academic innovation to advance novel targets through HTS and beyond.
Comb Chem High Throughput Screen. 2014 Mar;17(3):290-6. doi: 10.2174/1386207317666140109125415.
7
The role of academic institutions in the development of drugs for rare and neglected diseases.
Clin Pharmacol Ther. 2012 Aug;92(2):193-202. doi: 10.1038/clpt.2012.83. Epub 2012 Jul 4.
8
Academic drug discovery: current status and prospects.
Expert Opin Drug Discov. 2015;10(9):937-44. doi: 10.1517/17460441.2015.1059816. Epub 2015 Jun 19.
9
[The discovery process in the pharmaceutical industry].
J Soc Biol. 2009;203(3):249-69. doi: 10.1051/jbio:2009030. Epub 2009 Oct 16.
10
How academic labs can approach the drug discovery process as a way to synergize with big pharma.
Trends Microbiol. 2013 Jun;21(6):261-4. doi: 10.1016/j.tim.2013.03.006.

引用本文的文献

1
Nasal Immunization With Small Molecule Mast Cell Activators Enhance Immunity to Co-Administered Subunit Immunogens.
Front Immunol. 2021 Sep 10;12:730346. doi: 10.3389/fimmu.2021.730346. eCollection 2021.
2
Improving target assessment in biomedical research: the GOT-IT recommendations.
Nat Rev Drug Discov. 2021 Jan;20(1):64-81. doi: 10.1038/s41573-020-0087-3. Epub 2020 Nov 16.
3
Documenting and harnessing the biological potential of molecules in Distributed Drug Discovery (D3) virtual catalogs.
Chem Biol Drug Des. 2017 Nov;90(5):909-918. doi: 10.1111/cbdd.13012. Epub 2017 Jun 12.
4
AutoClickChem: click chemistry in silico.
PLoS Comput Biol. 2012;8(3):e1002397. doi: 10.1371/journal.pcbi.1002397. Epub 2012 Mar 15.
5
US academic drug discovery.
Nat Rev Drug Discov. 2011 Jun;10(6):409-10. doi: 10.1038/nrd3462.
6
The Alabama Drug Discovery Alliance: a collaborative partnership to facilitate academic drug discovery.
Pharm Res. 2011 Jul;28(7):1454-9. doi: 10.1007/s11095-011-0432-7. Epub 2011 Mar 30.

本文引用的文献

1
High-throughput hit finding and compound-profiling technologies for academic drug discovery.
Drug Discov Today Technol. 2008 Spring;5(1):e1-e34. doi: 10.1016/j.ddtec.2009.01.003.
3
The emerging academic drug-discovery sector.
Future Med Chem. 2009 Sep;1(6):1013-7. doi: 10.4155/fmc.09.78.
4
The role of human bromodomains in chromatin biology and gene transcription.
Curr Opin Drug Discov Devel. 2009 Sep;12(5):659-65.
6
Brd4 coactivates transcriptional activation of NF-kappaB via specific binding to acetylated RelA.
Mol Cell Biol. 2009 Mar;29(5):1375-87. doi: 10.1128/MCB.01365-08. Epub 2008 Dec 22.
7
Neurobiological applications of small molecule screening.
Chem Rev. 2008 May;108(5):1774-86. doi: 10.1021/cr0782372. Epub 2008 May 1.
8
How chromatin-binding modules interpret histone modifications: lessons from professional pocket pickers.
Nat Struct Mol Biol. 2007 Nov;14(11):1025-1040. doi: 10.1038/nsmb1338. Epub 2007 Nov 5.
9
The influence of drug-like concepts on decision-making in medicinal chemistry.
Nat Rev Drug Discov. 2007 Nov;6(11):881-90. doi: 10.1038/nrd2445.
10
Maximising use of in vitro ADMET tools to predict in vivo bioavailability and safety.
Expert Opin Drug Metab Toxicol. 2007 Oct;3(5):641-65. doi: 10.1517/17425255.3.5.641.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验