Suppr超能文献

公共领域的开放获取高通量药物发现:正在形成的珠穆朗玛峰。

Open access high throughput drug discovery in the public domain: a Mount Everest in the making.

机构信息

High Throughput Screening Laboratory, Institute for Advancing Medical Innovations, University of Kansas, Lawrence, KS 66047, USA.

出版信息

Curr Pharm Biotechnol. 2010 Nov;11(7):764-78. doi: 10.2174/138920110792927757.

Abstract

High throughput screening (HTS) facilitates screening large numbers of compounds against a biochemical target of interest using validated biological or biophysical assays. In recent years, a significant number of drugs in clinical trails originated from HTS campaigns, validating HTS as a bona fide mechanism for hit finding. In the current drug discovery landscape, the pharmaceutical industry is embracing open innovation strategies with academia to maximize their research capabilities and to feed their drug discovery pipeline. The goals of academic research have therefore expanded from target identification and validation to probe discovery, chemical genomics, and compound library screening. This trend is reflected in the emergence of HTS centers in the public domain over the past decade, ranging in size from modestly equipped academic screening centers to well endowed Molecular Libraries Probe Centers Network (MLPCN) centers funded by the NIH Roadmap initiative. These centers facilitate a comprehensive approach to probe discovery in academia and utilize both classical and cutting-edge assay technologies for executing primary and secondary screening campaigns. The various facets of academic HTS centers as well as their implications on technology transfer and drug discovery are discussed, and a roadmap for successful drug discovery in the public domain is presented. New lead discovery against therapeutic targets, especially those involving the rare and neglected diseases, is indeed a Mount Everestonian size task, and requires diligent implementation of pharmaceutical industry's best practices for a successful outcome.

摘要

高通量筛选 (HTS) 通过验证的生物或物理生物测定法,促进了针对感兴趣的生化靶标对大量化合物进行筛选。近年来,大量处于临床试验阶段的药物源自 HTS 活动,这验证了 HTS 是一种可靠的发现命中的机制。在当前的药物发现格局中,制药行业正在与学术界一起采用开放式创新策略,以最大化其研究能力并为其药物发现管道提供支持。因此,学术研究的目标已从靶标鉴定和验证扩展到探针发现、化学基因组学和化合物库筛选。这种趋势反映在过去十年中公共领域中 HTS 中心的出现,这些中心的规模从装备适度的学术筛选中心到由 NIH 路线图计划资助的资源充足的分子库探针中心网络 (MLPCN) 中心不等。这些中心促进了学术界中探针发现的全面方法,并利用经典和前沿的测定技术来执行初级和二级筛选活动。本文讨论了学术 HTS 中心的各个方面及其对技术转让和药物发现的影响,并提出了在公共领域中成功进行药物发现的路线图。针对治疗靶标的新先导化合物发现,特别是那些涉及罕见和被忽视疾病的靶标,确实是一项艰巨的任务,需要认真实施制药行业的最佳实践,才能取得成功。

相似文献

1
Open access high throughput drug discovery in the public domain: a Mount Everest in the making.
Curr Pharm Biotechnol. 2010 Nov;11(7):764-78. doi: 10.2174/138920110792927757.
2
Big pharma screening collections: more of the same or unique libraries? The AstraZeneca-Bayer Pharma AG case.
Drug Discov Today. 2013 Oct;18(19-20):1014-24. doi: 10.1016/j.drudis.2012.10.011. Epub 2012 Nov 3.
4
The European Lead Factory: An updated HTS compound library for innovative drug discovery.
Drug Discov Today. 2021 Oct;26(10):2406-2413. doi: 10.1016/j.drudis.2021.04.019. Epub 2021 Apr 20.
5
Novel trends in high-throughput screening.
Curr Opin Pharmacol. 2009 Oct;9(5):580-8. doi: 10.1016/j.coph.2009.08.004. Epub 2009 Sep 21.
7
The European Lead Factory: Results from a decade of collaborative, public-private, drug discovery programs.
Drug Discov Today. 2024 Mar;29(3):103886. doi: 10.1016/j.drudis.2024.103886. Epub 2024 Jan 18.
8
Benefits of Strategic Small-Scale Targeted Screening.
Assay Drug Dev Technol. 2016 Aug;14(6):329-32. doi: 10.1089/adt.2016.734. Epub 2016 Jun 24.
9
Fragment-based approaches in drug discovery and chemical biology.
Biochemistry. 2012 Jun 26;51(25):4990-5003. doi: 10.1021/bi3005126. Epub 2012 Jun 14.
10
An Analysis of Different Components of a High-Throughput Screening Library.
J Chem Inf Model. 2018 Oct 22;58(10):2057-2068. doi: 10.1021/acs.jcim.8b00258. Epub 2018 Sep 26.

引用本文的文献

1
In Vivo Acute Toxicity Studies of Novel Anti-Melanoma Compounds Downregulators of hnRNPH1/H2.
Biomolecules. 2023 Feb 10;13(2):349. doi: 10.3390/biom13020349.
2
Evolving scenario of big data and Artificial Intelligence (AI) in drug discovery.
Mol Divers. 2021 Aug;25(3):1439-1460. doi: 10.1007/s11030-021-10256-w. Epub 2021 Jun 23.
3
Chemical Screening of Nuclear Receptor Modulators.
Int J Mol Sci. 2020 Jul 31;21(15):5512. doi: 10.3390/ijms21155512.
4
Natural Products as Modulators of Sirtuins.
Molecules. 2020 Jul 20;25(14):3287. doi: 10.3390/molecules25143287.
5
Prediction of drug combination effects with a minimal set of experiments.
Nat Mach Intell. 2019 Dec;1(12):568-577. doi: 10.1038/s42256-019-0122-4. Epub 2019 Dec 9.
6
Quality Control of Quantitative High Throughput Screening Data.
Front Genet. 2019 May 9;10:387. doi: 10.3389/fgene.2019.00387. eCollection 2019.
7
Linguistic measures of chemical diversity and the "keywords" of molecular collections.
Sci Rep. 2018 May 15;8(1):7598. doi: 10.1038/s41598-018-25440-6.
8
Data Mining and Computational Modeling of High-Throughput Screening Datasets.
Methods Mol Biol. 2018;1755:197-221. doi: 10.1007/978-1-4939-7724-6_14.
9
Early Probe and Drug Discovery in Academia: A Minireview.
High Throughput. 2018 Feb 9;7(1):4. doi: 10.3390/ht7010004.
10
NMR-Fragment Based Virtual Screening: A Brief Overview.
Molecules. 2018 Jan 25;23(2):233. doi: 10.3390/molecules23020233.

本文引用的文献

1
The US Orphan Drug Act: rare disease research stimulator or commercial opportunity?
Health Policy. 2010 May;95(2-3):216-28. doi: 10.1016/j.healthpol.2009.12.001. Epub 2009 Dec 29.
2
Lessons from 60 years of pharmaceutical innovation.
Nat Rev Drug Discov. 2009 Dec;8(12):959-68. doi: 10.1038/nrd2961.
3
Current Screens Based on the AlphaScreen Technology for Deciphering Cell Signalling Pathways.
Curr Genomics. 2009 Apr;10(2):93-101. doi: 10.2174/138920209787847041.
4
HTS and hit finding in academia--from chemical genomics to drug discovery.
Drug Discov Today. 2009 Dec;14(23-24):1150-8. doi: 10.1016/j.drudis.2009.09.004. Epub 2009 Sep 28.
5
RNA interference screening for the discovery of oncology targets.
Expert Opin Ther Targets. 2009 Sep;13(9):1027-35. doi: 10.1517/14728220903179338.
6
A crowdsourcing evaluation of the NIH chemical probes.
Nat Chem Biol. 2009 Jul;5(7):441-7. doi: 10.1038/nchembio0709-441.
7
SPR imaging for high throughput, label-free interaction analysis.
Comb Chem High Throughput Screen. 2009 Sep;12(8):741-51. doi: 10.2174/138620709789104933. Epub 2009 Sep 1.
8
The application of cell-based label-free technology in drug discovery.
Biotechnol J. 2008 Apr;3(4):484-95. doi: 10.1002/biot.200800020.
9
High-content analysis in preclinical drug discovery.
Comb Chem High Throughput Screen. 2008 Mar;11(3):216-30. doi: 10.2174/138620708783877780.
10
Cell-based high-content screening of small-molecule libraries.
Curr Opin Chem Biol. 2007 Oct;11(5):503-10. doi: 10.1016/j.cbpa.2007.08.030. Epub 2007 Oct 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验