State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, People's Republic of China.
Nano Lett. 2010 Sep 8;10(9):3283-9. doi: 10.1021/nl100804a.
Herein, we report the synthesis of multiscale nanostructured p-type (Bi,Sb)(2)Te(3) bulk materials by melt-spinning single elements of Bi, Sb, and Te followed by a spark plasma sintering process. The samples that were most optimized with the resulting composition (Bi(0.48)Sb(1.52)Te(3)) and specific nanostructures showed an increase of approximately 50% or more in the figure of merit, ZT, over that of the commercial bulk material between 280 and 475 K, making it suitable for commercial applications related to both power generation and refrigeration. The results of high-resolution electron microscopy and small angle and inelastic neutron scattering along with corresponding thermoelectric property measurements corroborate that the 10-20 nm nanocrystalline domains with coherent boundaries are the key constituent that accounts for the resulting exceptionally low lattice thermal conductivity and significant improvement of ZT.
在此,我们报告了通过熔体纺丝单元素 Bi、Sb 和 Te 并随后进行火花等离子烧结工艺来合成多尺度纳米结构 p 型 (Bi,Sb)(2)Te(3) 块状材料。经过最优化处理的样品(Bi(0.48)Sb(1.52)Te(3))和特定的纳米结构在 280 至 475 K 之间的品质因数 ZT 方面比商业块状材料提高了约 50%或更多,使其适用于与发电和制冷相关的商业应用。高分辨率电子显微镜以及小角和非弹性中子散射的结果以及相应的热电性能测量证实,具有相干边界的 10-20nm 纳米晶畴是导致异常低晶格热导率和 ZT 显著提高的关键组成部分。