Suppr超能文献

采用熔体纺丝技术合成的纳米结构高硅锰化物的热电性能得到显著提高。

Significant enhancement in thermoelectric performance of nanostructured higher manganese silicides synthesized employing a melt spinning technique.

机构信息

CSIR-Network of Institutes for Solar Energy, CSIR-National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi 110012, India.

出版信息

Nanoscale. 2018 Jan 25;10(4):1970-1977. doi: 10.1039/c7nr06195a.

Abstract

The limited thermoelectric performance of p-type Higher Manganese Silicides (HMS) in terms of their low figure-of-merit (ZT), which is far below unity, is the main bottle-neck for realising an efficient HMS based thermoelectric generator, which has been recognized as the most promising material for harnessing waste-heat in the mid-temperature range, owing to its thermal stability, earth-abundant and environmentally friendly nature of its constituent elements. We report a significant enhancement in the thermoelectric performance of nanostructured HMS synthesized using rapid solidification by optimizing the cooling rates during melt-spinning followed by spark plasma sintering of the resulting melt-spun ribbons. By employing this experimental strategy, an unprecedented ZT ∼ 0.82 at 800 K was realized in spark plasma sintered 5 at% Al-doped MnSi HMS, melt spun at an optimized high cooling rate of ∼2 × 10 K s. This enhancement in ZT represents a ∼25% increase over the best reported values thus far for HMS and primarily originates from a nano-crystalline microstructure consisting of a HMS matrix (20-40 nm) with excess Si (3-9 nm) uniformly distributed in it. This nanostructure, resulting from the high cooling rates employed during the melt-spinning of HMS, introduces a high density of nano-crystallite boundaries in a wide spectrum of nano-scale dimensions, which scatter the low-to-mid-wavelength heat-carrying phonons. This abundant phonon scattering results in a significantly reduced thermal conductivity of ∼1.5 W m K at 800 K, which primarily contributes to the enhancement in ZT.

摘要

p 型高锰硅化物(HMS)的热电性能有限,其优值(ZT)远低于 1,这是实现高效 HMS 基热电发生器的主要瓶颈。由于其热稳定性、组成元素的丰富性和环境友好性,HMS 已被公认为中温范围内利用余热的最有前途的材料。我们报告了通过优化熔体纺丝过程中的冷却速率,然后对所得熔体纺丝带进行火花等离子烧结,来合成纳米结构 HMS,从而显著提高其热电性能。通过采用这种实验策略,在优化的高冷却速率(约 2×10 K s)下熔体纺丝的 5 at%Al 掺杂 MnSi HMS 中实现了前所未有的 ZT∼0.82(800 K)。ZT 的这种提高比迄今为止 HMS 报道的最佳值提高了约 25%,主要源于由 HMS 基体(20-40nm)和其中均匀分布的过量 Si(3-9nm)组成的纳米晶微观结构。这种纳米结构是由 HMS 熔体纺丝过程中采用的高冷却速率产生的,在很宽的纳米尺度范围内引入了高密度的纳米晶界,从而散射低到中波长的载热声子。丰富的声子散射导致 800 K 时热导率显著降低至约 1.5 W m K,这主要有助于 ZT 的提高。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验