CSIR-Network of Institutes for Solar Energy, CSIR-National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi 110012, India.
Nanoscale. 2018 Jan 25;10(4):1970-1977. doi: 10.1039/c7nr06195a.
The limited thermoelectric performance of p-type Higher Manganese Silicides (HMS) in terms of their low figure-of-merit (ZT), which is far below unity, is the main bottle-neck for realising an efficient HMS based thermoelectric generator, which has been recognized as the most promising material for harnessing waste-heat in the mid-temperature range, owing to its thermal stability, earth-abundant and environmentally friendly nature of its constituent elements. We report a significant enhancement in the thermoelectric performance of nanostructured HMS synthesized using rapid solidification by optimizing the cooling rates during melt-spinning followed by spark plasma sintering of the resulting melt-spun ribbons. By employing this experimental strategy, an unprecedented ZT ∼ 0.82 at 800 K was realized in spark plasma sintered 5 at% Al-doped MnSi HMS, melt spun at an optimized high cooling rate of ∼2 × 10 K s. This enhancement in ZT represents a ∼25% increase over the best reported values thus far for HMS and primarily originates from a nano-crystalline microstructure consisting of a HMS matrix (20-40 nm) with excess Si (3-9 nm) uniformly distributed in it. This nanostructure, resulting from the high cooling rates employed during the melt-spinning of HMS, introduces a high density of nano-crystallite boundaries in a wide spectrum of nano-scale dimensions, which scatter the low-to-mid-wavelength heat-carrying phonons. This abundant phonon scattering results in a significantly reduced thermal conductivity of ∼1.5 W m K at 800 K, which primarily contributes to the enhancement in ZT.
p 型高锰硅化物(HMS)的热电性能有限,其优值(ZT)远低于 1,这是实现高效 HMS 基热电发生器的主要瓶颈。由于其热稳定性、组成元素的丰富性和环境友好性,HMS 已被公认为中温范围内利用余热的最有前途的材料。我们报告了通过优化熔体纺丝过程中的冷却速率,然后对所得熔体纺丝带进行火花等离子烧结,来合成纳米结构 HMS,从而显著提高其热电性能。通过采用这种实验策略,在优化的高冷却速率(约 2×10 K s)下熔体纺丝的 5 at%Al 掺杂 MnSi HMS 中实现了前所未有的 ZT∼0.82(800 K)。ZT 的这种提高比迄今为止 HMS 报道的最佳值提高了约 25%,主要源于由 HMS 基体(20-40nm)和其中均匀分布的过量 Si(3-9nm)组成的纳米晶微观结构。这种纳米结构是由 HMS 熔体纺丝过程中采用的高冷却速率产生的,在很宽的纳米尺度范围内引入了高密度的纳米晶界,从而散射低到中波长的载热声子。丰富的声子散射导致 800 K 时热导率显著降低至约 1.5 W m K,这主要有助于 ZT 的提高。