Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei 10617, Taiwan.
Environ Sci Technol. 2013 Feb 5;47(3):1416-24. doi: 10.1021/es302539f. Epub 2013 Jan 23.
Understanding the daily changes in ambient air quality concentrations is important to the assessing human exposure and environmental health. However, the fine temporal scales (e.g., hourly) involved in this assessment often lead to high variability in air quality concentrations. This is because of the complex short-term physical and chemical mechanisms among the pollutants. Consequently, high heterogeneity is usually present in not only the averaged pollution levels, but also the intraday variance levels of the daily observations of ambient concentration across space and time. This characteristic decreases the estimation performance of common techniques. This study proposes a novel quantile-based Bayesian maximum entropy (QBME) method to account for the nonstationary and nonhomogeneous characteristics of ambient air pollution dynamics. The QBME method characterizes the spatiotemporal dependence among the ambient air quality levels based on their location-specific quantiles and accounts for spatiotemporal variations using a local weighted smoothing technique. The epistemic framework of the QBME method can allow researchers to further consider the uncertainty of space-time observations. This study presents the spatiotemporal modeling of daily CO and PM10 concentrations across Taiwan from 1998 to 2009 using the QBME method. Results show that the QBME method can effectively improve estimation accuracy in terms of lower mean absolute errors and standard deviations over space and time, especially for pollutants with strong nonhomogeneous variances across space. In addition, the epistemic framework can allow researchers to assimilate the site-specific secondary information where the observations are absent because of the common preferential sampling issues of environmental data. The proposed QBME method provides a practical and powerful framework for the spatiotemporal modeling of ambient pollutants.
了解环境空气质量浓度的日常变化对于评估人类暴露和环境健康状况非常重要。然而,这种评估所涉及的精细时间尺度(例如,每小时)通常会导致空气质量浓度的高度变化。这是因为污染物之间存在复杂的短期物理和化学机制。因此,不仅平均污染水平,而且在空间和时间上的每日观测的日内方差水平通常都存在高度异质性。这种特征降低了常见技术的估计性能。本研究提出了一种新颖的基于分位数的贝叶斯最大熵(QBME)方法,以考虑环境空气污染动态的非平稳和非均匀特征。QBME 方法基于位置特定的分位数来描述环境空气质量水平之间的时空相关性,并使用局部加权平滑技术来考虑时空变化。QBME 方法的认识框架可以允许研究人员进一步考虑时空观测的不确定性。本研究使用 QBME 方法对 1998 年至 2009 年台湾地区的每日 CO 和 PM10 浓度进行了时空建模。结果表明,QBME 方法可以有效地提高空间和时间上的估计精度,降低平均绝对误差和标准差,特别是对于在空间上具有强非均匀方差的污染物。此外,认识框架可以允许研究人员同化由于环境数据的常见优先采样问题而导致观测缺失的特定地点的二次信息。所提出的 QBME 方法为环境污染物的时空建模提供了一个实用而强大的框架。