Department of Physics and Astronomy and Center for Neurodynamics, University of Missouri at St. Louis, St. Louis, Missouri, United States of America.
PLoS One. 2010 Aug 3;5(8):e11952. doi: 10.1371/journal.pone.0011952.
The role of mutation rate in optimizing key features of evolutionary dynamics has recently been investigated in various computational models. Here, we address the related question of how maximum mutation size affects the formation of species in a simple computational evolutionary model. We find that the number of species is maximized for intermediate values of a mutation size parameter mu; the result is observed for evolving organisms on a randomly changing landscape as well as in a version of the model where negative feedback exists between the local population size and the fitness provided by the landscape. The same result is observed for various distributions of mutation values within the limits set by mu. When organisms with various values of mu compete against each other, those with intermediate mu values are found to survive. The surviving values of mu from these competition simulations, however, do not necessarily coincide with the values that maximize the number of species. These results suggest that various complex factors are involved in determining optimal mutation parameters for any population, and may also suggest approaches for building a computational bridge between the (micro) dynamics of mutations at the level of individual organisms and (macro) evolutionary dynamics at the species level.
最近,在各种计算模型中研究了突变率在优化进化动力学关键特征中的作用。在这里,我们研究了最大突变大小如何影响简单计算进化模型中物种的形成这一相关问题。我们发现,对于突变大小参数 μ 的中间值,物种的数量最大;这一结果在随机变化的环境中进化的生物体以及在局部种群大小与景观提供的适应性之间存在负反馈的模型版本中都得到了观察。在 μ 设定的限制内,各种突变值分布都观察到了相同的结果。当具有不同 μ 值的生物体相互竞争时,发现中间 μ 值的生物体能够存活下来。然而,从这些竞争模拟中幸存下来的 μ 值不一定与最大化物种数量的 μ 值重合。这些结果表明,确定任何种群的最佳突变参数涉及到各种复杂因素,也可能为在个体生物体水平上的突变(微观)动力学和物种水平上的(宏观)进化动力学之间建立计算桥梁提供了方法。