Suppr超能文献

FLAP:虚拟筛选中的网格分子相互作用场。使用 DUD 数据集进行验证。

FLAP: GRID molecular interaction fields in virtual screening. validation using the DUD data set.

机构信息

Molecular Discovery Limited, 215 Marsh Road, Pinner, Middlesex, London HA5 5NE, United Kingdom.

出版信息

J Chem Inf Model. 2010 Aug 23;50(8):1442-50. doi: 10.1021/ci100221g.

Abstract

The performance of FLAP (Fingerprints for Ligands and Proteins) in virtual screening is assessed using a subset of the DUD (Directory of Useful Decoys) benchmarking data set containing 13 targets each with more than 15 different chemotype classes. A variety of ligand and receptor-based virtual screening approaches are examined, using combinations of individual templates 2D structures of known actives, a cocrystallized ligand, a receptor structure, or a cocrystallized ligand-biased receptor structure. We examine several data fusion approaches to combine the results of the individual virtual screens. In doing so, we show that excellent chemotype enrichment is achieved in both single target ligand-based and receptor-based approaches, of approximately 17-fold over random on average at a false positive rate of 1%. We also show that using as much starting knowledge as possible improves chemotype enrichment, and that data fusion using Pareto ranking is an effective method to do this giving up to 50% improvement in enrichment over the single methods. Finally we show that if inactivity or decoy data is incorporated, automatically training the scoring function in FLAP improves recovery still further, with almost 2-fold improvement over the enrichments shown by the single methods. The results clearly demonstrate the utility of FLAP for virtual screening when either a limited or wide range of prior knowledge is available.

摘要

FLAP(配体和蛋白质指纹)在虚拟筛选中的性能使用包含 13 个靶标(每个靶标都有超过 15 种不同化学类型)的 DUD(有用抑制剂目录)基准测试数据集的子集进行评估。我们检查了各种基于配体和受体的虚拟筛选方法,使用已知活性剂的单个模板 2D 结构、共结晶配体、受体结构或共结晶配体偏向受体结构的组合。我们研究了几种数据融合方法来组合各个虚拟筛选的结果。通过这样做,我们表明在单个靶标基于配体和基于受体的方法中都实现了出色的化学类型富集,平均约为随机的 17 倍,假阳性率为 1%。我们还表明,尽可能多地利用初始知识可以提高化学类型的富集,并且使用 Pareto 排名进行数据融合是一种有效的方法,可以在单个方法的基础上提高 50%的富集。最后,我们表明如果纳入非活性或诱饵数据,则自动在 FLAP 中训练评分函数可以进一步提高恢复能力,与单个方法所示的富集相比,提高了近 2 倍。这些结果清楚地表明,无论可用的先验知识有限还是广泛,FLAP 都可用于虚拟筛选。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验