Suppr超能文献

FieldScreen:使用分子场的虚拟筛选。应用于DUD数据集。

FieldScreen: virtual screening using molecular fields. Application to the DUD data set.

作者信息

Cheeseright Timothy J, Mackey Mark D, Melville James L, Vinter Jeremy G

机构信息

Cresset BioMolecular Discovery Ltd., BioPark Hertfordshire, Broadwater Road, Welwyn Garden City, Hertfordshire AL7 3AX, United Kingdom.

出版信息

J Chem Inf Model. 2008 Nov;48(11):2108-17. doi: 10.1021/ci800110p.

Abstract

FieldScreen, a ligand-based Virtual Screening (VS) method, is described. Its use of 3D molecular fields makes it particularly suitable for scaffold hopping, and we have rigorously validated it for this purpose using a clustered version of the Directory of Useful Decoys (DUD). Using thirteen pharmaceutically relevant targets, we demonstrate that FieldScreen produces superior early chemotype enrichments, compared to DOCK. Additionally, hits retrieved by FieldScreen are consistently lower in molecular weight than those retrieved by docking. Where no X-ray protein structures are available, FieldScreen searches are more robust than docking into homology models or apo structures.

摘要

本文描述了一种基于配体的虚拟筛选(VS)方法——FieldScreen。它对三维分子场的使用使其特别适用于骨架跃迁,并且我们已使用有用诱饵目录(DUD)的聚类版本对此进行了严格验证。通过13个与药学相关的靶点,我们证明,与DOCK相比,FieldScreen能产生更优异的早期化学型富集。此外,FieldScreen检索到的命中物的分子量始终低于对接检索到的命中物。在没有X射线蛋白质结构可用的情况下,FieldScreen搜索比对接同源模型或无配体结构更稳健。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验