Aggarwal Rishal, R Koes David
Joint PhD Program in Computational Biology, Carnegie Mellon University-University of Pittsburgh, Pittsburgh, PA, USA.
Computational & Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA.
BMC Biol. 2024 Dec 31;22(1):301. doi: 10.1186/s12915-024-02096-5.
Molecular interactions between proteins and their ligands are important for drug design. A pharmacophore consists of favorable molecular interactions in a protein binding site and can be utilized for virtual screening. Pharmacophores are easiest to identify from co-crystal structures of a bound protein-ligand complex. However, designing a pharmacophore in the absence of a ligand is a much harder task.
In this work, we develop a deep learning method that can identify pharmacophores in the absence of a ligand. Specifically, we train a CNN model to identify potential favorable interactions in the binding site, and develop a deep geometric Q-learning algorithm that attempts to select an optimal subset of these interaction points to form a pharmacophore. With this algorithm, we show better prospective virtual screening performance, in terms of F1 scores, on the DUD-E dataset than random selection of ligand-identified features from co-crystal structures. We also conduct experiments on the LIT-PCBA dataset and show that it provides efficient solutions for identifying active molecules. Finally, we test our method by screening the COVID moonshot dataset and show that it would be effective in identifying prospective lead molecules even in the absence of fragment screening experiments.
PharmRL addresses the need for automated methods in pharmacophore design, particularly in cases where a cognate ligand is unavailable. Experimental results demonstrate that PharmRL generates functional pharmacophores. Additionally, we provide a Google Colab notebook to facilitate the use of this method.
蛋白质与其配体之间的分子相互作用对药物设计很重要。药效团由蛋白质结合位点中的有利分子相互作用组成,可用于虚拟筛选。从结合的蛋白质 - 配体复合物的共晶体结构中最容易识别药效团。然而,在没有配体的情况下设计药效团是一项艰巨得多的任务。
在这项工作中,我们开发了一种深度学习方法,该方法可以在没有配体的情况下识别药效团。具体而言,我们训练一个卷积神经网络(CNN)模型来识别结合位点中的潜在有利相互作用,并开发一种深度几何Q学习算法,该算法试图选择这些相互作用点的最佳子集以形成药效团。使用该算法,我们在DUD-E数据集上的F1分数方面展示了比从共晶体结构中随机选择配体识别特征更好的前瞻性虚拟筛选性能。我们还在LIT-PCBA数据集上进行了实验,并表明它为识别活性分子提供了有效的解决方案。最后,我们通过筛选COVID moonshot数据集来测试我们的方法,并表明即使在没有片段筛选实验的情况下,它也能有效地识别潜在的先导分子。
PharmRL满足了药效团设计中对自动化方法的需求,特别是在没有同源配体的情况下。实验结果表明PharmRL生成了功能性药效团。此外,我们提供了一个Google Colab笔记本以方便使用此方法。