Institute of Biochemistry, Department of Chemistry, University of Cologne, 50674 Cologne, Germany.
Biochemistry. 2010 Sep 21;49(37):8177-86. doi: 10.1021/bi1003487.
Eukaryotic assimilatory nitrate reductase (NR) is a dimeric multidomain molybdo-heme-flavo protein that catalyzes the first and rate-limiting step in the nitrate assimilation of plants, algae, and fungi. Nitrate reduction takes place at the N-terminal molybdenum cofactor-containing domain. Reducing equivalents are derived from NADH, which reduce the C-terminal FAD domain followed by single-electron transfer steps via the middle heme domain to the molybdenum center. In plants, nitrate reduction is post-translationally inhibited by phosphorylation and subsequent binding of 14-3-3 protein to a conserved phosphoserine located in the surface-exposed hinge between the catalytic and heme domain. Here we investigated Arabidopsis thaliana NR activity upon phosphorylation and 14-3-3 binding by using a fully defined in vitro system with purified proteins. We demonstrate that among different calcium-dependent protein kinases (CPKs), CPK-17 efficiently phosphorylates Ser534 in NR. Out of eight purified Arabidopsis 14-3-3 proteins, isoforms ω, κ, and λ exhibited the strongest inhibition of NR. The kinetic parameters of noninhibited, phosphorylated NR (pNR) and pNR in a complex with 14-3-3 were investigated. An 18-fold reduction in k(cat) and a decrease in the apparent K(M)(nitrate) (from 280 to 141 μM) were observed upon binding of 14-3-3 to pNR, suggesting a noncompetitive inhibition with a preferential binding to the substrate-bound state of the enzyme. Recording partial activities of NR demonstrated that the transfer of electrons to the heme is not affected by 14-3-3 binding. The Ser534Ala variant of NR was not inhibited by 14-3-3 proteins. We propose that 14-3-3 binding to Ser534 blocks the transfer of electrons from heme to nitrate by arresting the domain movement via hinge 1.
真核生物同化硝酸盐还原酶(NR)是一种二聚体多结构域钼-血红素-黄素蛋白,它催化植物、藻类和真菌中硝酸盐同化的第一步和限速步骤。硝酸盐还原发生在含钼辅因子的 N 端结构域。还原当量来自 NADH,其还原 C 端 FAD 结构域,然后通过中间血红素结构域进行单电子转移步骤,最终到达钼中心。在植物中,硝酸盐还原通过磷酸化和随后的 14-3-3 蛋白与位于催化和血红素结构域之间表面暴露铰链上的保守磷酸丝氨酸结合而被翻译后抑制。在这里,我们使用纯化蛋白的完全定义的体外系统研究了拟南芥 NR 在磷酸化和 14-3-3 结合后的活性。我们证明,在不同的钙依赖性蛋白激酶(CPKs)中,CPK-17 有效地磷酸化 NR 中的 Ser534。在 8 种纯化的拟南芥 14-3-3 蛋白中,ω、κ 和 λ 同工型表现出对 NR 的最强抑制作用。研究了非抑制性、磷酸化 NR(pNR)和与 14-3-3 结合的 pNR 的动力学参数。当 14-3-3 与 pNR 结合时,k(cat) 降低了 18 倍,表观 K(M)(硝酸盐)(从 280 降至 141 μM)降低,表明存在非竞争性抑制,并且优先与酶的底物结合状态结合。记录 NR 的部分活性表明,14-3-3 结合不会影响电子向血红素的转移。NR 的 Ser534Ala 变体不受 14-3-3 蛋白的抑制。我们提出,14-3-3 与 Ser534 结合通过铰链 1 阻止电子从血红素向硝酸盐的转移,从而阻止结构域运动。