Institute of Biochemistry, Department of Chemistry and Center for Molecular Medicine, University of Cologne, 50674 Cologne, Germany.
J Biol Chem. 2012 Feb 10;287(7):4562-71. doi: 10.1074/jbc.M111.323113. Epub 2011 Dec 13.
14-3-3 proteins regulate key processes in eukaryotic cells including nitrogen assimilation in plants by tuning the activity of nitrate reductase (NR), the first and rate-limiting enzyme in this pathway. The homodimeric NR harbors three cofactors, each of which is bound to separate domains, thus forming an electron transfer chain. 14-3-3 proteins inhibit NR by binding to a conserved phosphorylation site localized in the linker between the heme and molybdenum cofactor-containing domains. Here, we have investigated the molecular mechanism of 14-3-3-mediated NR inhibition using a fragment of the enzyme lacking the third domain, allowing us to analyze electron transfer from the heme cofactor via the molybdenum center to nitrate. The kinetic behavior of the inhibited Mo-heme fragment indicates that the principal point at which 14-3-3 acts is the electron transfer from the heme to the molybdenum cofactor. We demonstrate that this is not due to a perturbation of the reduction potentials of either the heme or the molybdenum center and conclude that 14-3-3 most likely inhibits nitrate reductase by inducing a conformational change that significantly increases the distance between the two redox-active sites.
14-3-3 蛋白通过调节硝酸还原酶 (NR) 的活性来调节真核细胞中的关键过程,NR 是该途径中的第一个也是限速酶。NR 是同源二聚体,含有三个辅因子,每个辅因子都结合在不同的结构域上,从而形成电子传递链。14-3-3 蛋白通过与位于血红素和含钼辅因子结构域之间的连接区的保守磷酸化位点结合来抑制 NR。在这里,我们使用缺乏第三个结构域的酶片段研究了 14-3-3 介导的 NR 抑制的分子机制,使我们能够分析通过钼中心从血红素辅因子到硝酸盐的电子转移。受抑制的 Mo-血红素片段的动力学行为表明,14-3-3 起作用的主要点是电子从血红素转移到钼辅因子。我们证明这不是由于血红素或钼中心的还原电势受到干扰,而是 14-3-3 很可能通过诱导构象变化来抑制硝酸还原酶,这种构象变化显著增加了两个氧化还原活性位点之间的距离。