Suppr超能文献

14-3-3 蛋白介导抑制植物硝酸还原酶的分子机制。

Molecular mechanism of 14-3-3 protein-mediated inhibition of plant nitrate reductase.

机构信息

Institute of Biochemistry, Department of Chemistry and Center for Molecular Medicine, University of Cologne, 50674 Cologne, Germany.

出版信息

J Biol Chem. 2012 Feb 10;287(7):4562-71. doi: 10.1074/jbc.M111.323113. Epub 2011 Dec 13.

Abstract

14-3-3 proteins regulate key processes in eukaryotic cells including nitrogen assimilation in plants by tuning the activity of nitrate reductase (NR), the first and rate-limiting enzyme in this pathway. The homodimeric NR harbors three cofactors, each of which is bound to separate domains, thus forming an electron transfer chain. 14-3-3 proteins inhibit NR by binding to a conserved phosphorylation site localized in the linker between the heme and molybdenum cofactor-containing domains. Here, we have investigated the molecular mechanism of 14-3-3-mediated NR inhibition using a fragment of the enzyme lacking the third domain, allowing us to analyze electron transfer from the heme cofactor via the molybdenum center to nitrate. The kinetic behavior of the inhibited Mo-heme fragment indicates that the principal point at which 14-3-3 acts is the electron transfer from the heme to the molybdenum cofactor. We demonstrate that this is not due to a perturbation of the reduction potentials of either the heme or the molybdenum center and conclude that 14-3-3 most likely inhibits nitrate reductase by inducing a conformational change that significantly increases the distance between the two redox-active sites.

摘要

14-3-3 蛋白通过调节硝酸还原酶 (NR) 的活性来调节真核细胞中的关键过程,NR 是该途径中的第一个也是限速酶。NR 是同源二聚体,含有三个辅因子,每个辅因子都结合在不同的结构域上,从而形成电子传递链。14-3-3 蛋白通过与位于血红素和含钼辅因子结构域之间的连接区的保守磷酸化位点结合来抑制 NR。在这里,我们使用缺乏第三个结构域的酶片段研究了 14-3-3 介导的 NR 抑制的分子机制,使我们能够分析通过钼中心从血红素辅因子到硝酸盐的电子转移。受抑制的 Mo-血红素片段的动力学行为表明,14-3-3 起作用的主要点是电子从血红素转移到钼辅因子。我们证明这不是由于血红素或钼中心的还原电势受到干扰,而是 14-3-3 很可能通过诱导构象变化来抑制硝酸还原酶,这种构象变化显著增加了两个氧化还原活性位点之间的距离。

相似文献

1
Molecular mechanism of 14-3-3 protein-mediated inhibition of plant nitrate reductase.
J Biol Chem. 2012 Feb 10;287(7):4562-71. doi: 10.1074/jbc.M111.323113. Epub 2011 Dec 13.
2
Kinetic analysis of 14-3-3-inhibited Arabidopsis thaliana nitrate reductase.
Biochemistry. 2010 Sep 21;49(37):8177-86. doi: 10.1021/bi1003487.
3
Dual binding of 14-3-3 protein regulates Arabidopsis nitrate reductase activity.
J Biol Inorg Chem. 2015 Mar;20(2):277-86. doi: 10.1007/s00775-014-1232-4. Epub 2015 Jan 13.
4
Biochemical characterization of molybdenum cofactor-free nitrate reductase from Neurospora crassa.
J Biol Chem. 2013 May 17;288(20):14657-14671. doi: 10.1074/jbc.M113.457960. Epub 2013 Mar 28.
6
Mediated electrochemistry of nitrate reductase from Arabidopsis thaliana.
J Phys Chem B. 2013 Jun 27;117(25):7569-77. doi: 10.1021/jp404076w. Epub 2013 Jun 12.
7
Structural basis of eukaryotic nitrate reduction: crystal structures of the nitrate reductase active site.
Plant Cell. 2005 Apr;17(4):1167-79. doi: 10.1105/tpc.104.029694. Epub 2005 Mar 16.
8
Tuning the redox properties of a [4Fe-4S] center to modulate the activity of Mo-bisPGD periplasmic nitrate reductase.
Biochim Biophys Acta Bioenerg. 2019 May 1;1860(5):402-413. doi: 10.1016/j.bbabio.2019.01.003. Epub 2019 Jan 29.
9
Regulation of nitrate reduction in Arabidopsis WT and hxk1 mutant under C and N metabolites.
Physiol Plant. 2013 Oct;149(2):260-72. doi: 10.1111/ppl.12045. Epub 2013 Apr 2.
10
Deconstructing the electron transfer chain in a complex molybdoenzyme: Assimilatory nitrate reductase from Neurospora crassa.
Biochim Biophys Acta Bioenerg. 2021 Mar 1;1862(3):148358. doi: 10.1016/j.bbabio.2020.148358. Epub 2020 Dec 24.

引用本文的文献

2
Calcium regulates primary nitrate response associated gene transcription in a time- and dose-dependent manner.
Protoplasma. 2024 Mar;261(2):257-269. doi: 10.1007/s00709-023-01893-z. Epub 2023 Sep 28.
4
Redox post-translational modifications and their interplay in plant abiotic stress tolerance.
Front Plant Sci. 2022 Oct 26;13:1027730. doi: 10.3389/fpls.2022.1027730. eCollection 2022.
5
Improving coordination of plant growth and nitrogen metabolism for sustainable agriculture.
aBIOTECH. 2020 Aug 31;1(4):255-275. doi: 10.1007/s42994-020-00027-w. eCollection 2020 Oct.
6
Fragment Screening Yields a Small-Molecule Stabilizer of 14-3-3 Dimers That Modulates Client Protein Interactions.
Chembiochem. 2022 Sep 5;23(17):e202200178. doi: 10.1002/cbic.202200178. Epub 2022 Jul 19.
8
Role of protein phosphatases in the regulation of nitrogen nutrition in plants.
Physiol Mol Biol Plants. 2021 Dec;27(12):2911-2922. doi: 10.1007/s12298-021-01115-x. Epub 2021 Dec 24.
9
Magnesium Signaling in Plants.
Int J Mol Sci. 2021 Jan 25;22(3):1159. doi: 10.3390/ijms22031159.
10

本文引用的文献

1
Structural basis of 14-3-3 protein functions.
Semin Cell Dev Biol. 2011 Sep;22(7):663-72. doi: 10.1016/j.semcdb.2011.09.001. Epub 2011 Sep 6.
2
Kinetic analysis of 14-3-3-inhibited Arabidopsis thaliana nitrate reductase.
Biochemistry. 2010 Sep 21;49(37):8177-86. doi: 10.1021/bi1003487.
3
Plant phosphopeptide-binding proteins as signaling mediators.
Curr Opin Plant Biol. 2010 Oct;13(5):527-32. doi: 10.1016/j.pbi.2010.06.001. Epub 2010 Jul 16.
4
14-3-3 and FHA domains mediate phosphoprotein interactions.
Annu Rev Plant Biol. 2009;60:67-91. doi: 10.1146/annurev.arplant.59.032607.092844.
5
Signalling cascades integrating light-enhanced nitrate metabolism.
Biochem J. 2008 Oct 1;415(1):11-9. doi: 10.1042/BJ20081115.
6
The 14-3-3 protein affects the conformation of the regulatory domain of human tyrosine hydroxylase.
Biochemistry. 2008 Feb 12;47(6):1768-77. doi: 10.1021/bi7019468. Epub 2008 Jan 9.
7
Molecular analysis and expression patterns of the 14-3-3 gene family from Oryza sativa.
J Biochem Mol Biol. 2007 May 31;40(3):349-57. doi: 10.5483/bmbrep.2007.40.3.349.
9
Phosphorylation-independent interaction between 14-3-3 and exoenzyme S: from structure to pathogenesis.
EMBO J. 2007 Feb 7;26(3):902-13. doi: 10.1038/sj.emboj.7601530. Epub 2007 Jan 18.
10
Nitrite anions induce nitrosative deamination of peptides and proteins.
Rapid Commun Mass Spectrom. 2006;20(24):3634-8. doi: 10.1002/rcm.2776.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验