Institut für Anorganische und Analytische Chemie and Freiburger Materialforschungszentrum (FMF), Albert-Ludwigs Universität Freiburg, Albertstrasse 21, 79104 Freiburg, Germany.
J Phys Chem B. 2010 Sep 2;114(34):11133-40. doi: 10.1021/jp104679m.
The melting points (T(fus)) of crystalline ionic liquids are calculated from the ratio of the fusion enthalpy and entropy at the melting point where solid and liquid phases are in chemical equilibrium (DeltaG(T) = 0), and therefore, T(fus) = Delta(fus)H(T)/Delta(fus)S(T) (if T = T(fus)). We specify two variants of this method that have no need for experimental input or tedious simulations but rely on simple calculations feasible with standard quantum chemical program codes and may further be augmented by COSMO-RS. Only single ions are used as input, making the demanding calculation of ion pairs superfluous. The fusion enthalpy is obtained by the principles of volume-based thermodynamics (ion volumes as the major contributor), which may additionally be augmented by COSMO-RS interaction enthalpies for increased accuracy. The calculation of the fusion entropy largely relies on a procedure originally developed for neutral organic molecules that was extended to molecular ionic compounds. Its contributors are the site symmetry sigma and the number of torsion angles tau, which are both determined individually for the cation and the anion and are included as their geometric mean. The two methods were tested on several sets of ionic liquids (ILs) and a combination of all sets (67 ILs) that span an experimental melting temperature range of 337 degrees C. The average error of the simpler, volume-based model (only ion volumes, sigma, and tau as input) is 36.4 degrees C and that of the augmented method (using ion volumes, sigma, tau, and COSMO-RS output) is 24.5 degrees C.
结晶离子液体的熔点(T(fus))是通过在固液两相处于化学平衡时的熔融焓和熵的比值计算得到的(DeltaG(T) = 0),因此,T(fus) = Delta(fus)H(T)/Delta(fus)S(T)(如果 T = T(fus))。我们指定了两种变体,它们不需要实验输入或繁琐的模拟,而是依赖于标准量子化学程序代码可行的简单计算,并且可以进一步通过 COSMO-RS 增强。仅使用单个离子作为输入,从而使对离子对的要求苛刻的计算变得多余。熔融焓是通过基于体积的热力学原理(离子体积作为主要贡献者)获得的,该原理可以通过 COSMO-RS 相互作用焓进一步增强,以提高准确性。熔融熵的计算主要依赖于最初为中性有机分子开发的程序,该程序已扩展到分子离子化合物。其贡献者是点群对称性 sigma 和扭转角 tau 的数量,它们分别为阳离子和阴离子单独确定,并作为它们的几何平均值包括在内。这两种方法在几组离子液体(ILs)上进行了测试,并对所有组(67 个 ILs)进行了测试,这些 ILs的实验熔点范围为 337 摄氏度。基于体积的简单模型(仅离子体积、sigma 和 tau 作为输入)的平均误差为 36.4 摄氏度,而增强方法(使用离子体积、sigma、tau 和 COSMO-RS 输出)的平均误差为 24.5 摄氏度。