Suppr超能文献

[戈亚斯州戈亚尼亚市青少年的交通伤害情况]

[Traffic injuries among youth in Goiânia, Goiás State].

作者信息

Caixeta Carlos Roberto, Minamisava Ruth, Oliveira Lizete Malagoni de Almeida Cavalcante, Brasil Virginia Visconde

机构信息

Hospital das Clínicas, Universidade Federal de Goiás, Goiânia, GO, 74605-050, Brazil.

出版信息

Cien Saude Colet. 2010 Jul;15(4):2075-84. doi: 10.1590/s1413-81232010000400021.

Abstract

Traffic injuries are currently one of the world's main public health issues in both developed and developing countries. This study aimed to describe the circumstances involved in the traffic accidents and the profile of the victims attended at the Emergency Hospital of Goiânia, aged 15 to 24 years and residents in Goiânia, Goiás State, Brazil. It's a prospective cross-sectional study carried out from August 2005 to August 2006 by systematic sampling. Data were analyzed by descriptive statistics. Most of the 301 victims were male, mean age of 19.94 +/- 2.73 years, and drivers. Motorcycles (67.33%) and bicycles (16.67%) were frequently mode of transport. Accidents usually occurred around 6 pm, on Fridays and Sundays. The victims were generally traveling/walking to/from exercise, sports, school, recreational or entertainment activities. Suspicion of alcohol use was reported by 15.16% of the cases. More motorcyclists believed that there was imprudence/ negligence than the cyclists. Security equipment was not used by 8.58% of motorcyclists, 95.45% of cyclists. Educational measures for motorcyclists and law enforcement highlighting the nights and weekends are needed.

摘要

在发达国家和发展中国家,交通伤目前都是世界主要的公共卫生问题之一。本研究旨在描述交通事故所涉及的情况以及在巴西戈亚斯州戈亚尼亚市急诊医院就诊的年龄在15至24岁、居住在戈亚尼亚市的受害者概况。这是一项于2005年8月至2006年8月通过系统抽样进行的前瞻性横断面研究。数据采用描述性统计分析。301名受害者中大多数为男性,平均年龄为19.94±2.73岁,且多为司机。摩托车(67.33%)和自行车(16.67%)是常见的交通方式。事故通常发生在周五和周日下午6点左右。受害者一般是在往返锻炼、运动、学校、娱乐或消遣活动途中。15.16%的案例报告怀疑有饮酒情况。与骑自行车者相比,更多骑摩托车者认为存在鲁莽/疏忽行为。8.58%的骑摩托车者、95.45%的骑自行车者未使用安全装备。需要针对骑摩托车者采取教育措施,并加强夜间和周末的执法力度。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验