Suppr超能文献

比较肌腱衍生成纤维细胞和骨髓基质细胞在电化学定向胶原构建体上的形态、取向和迁移。

Comparison of morphology, orientation, and migration of tendon derived fibroblasts and bone marrow stromal cells on electrochemically aligned collagen constructs.

机构信息

Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907-2032, USA.

出版信息

J Biomed Mater Res A. 2010 Sep 15;94(4):1070-9. doi: 10.1002/jbm.a.32783.

Abstract

There are approximately 33 million injuries involving musculoskeletal tissues (including tendons and ligaments) every year in the United States. In certain cases the tendons and ligaments are damaged irreversibly and require replacements that possess the natural functional properties of these tissues. As a biomaterial, collagen has been a key ingredient in tissue engineering scaffolds. The application range of collagen in tissue engineering would be greatly broadened if the assembly process could be better controlled to facilitate the synthesis of dense, oriented tissue-like constructs. An electrochemical method has recently been developed in our laboratory to form highly oriented and densely packed collagen bundles with mechanical strength approaching that of tendons. However, there is limited information whether this electrochemically aligned collagen bundle (ELAC) presents advantages over randomly oriented bundles in terms of cell response. Therefore, the current study aimed to assess the biocompatibility of the collagen bundles in vitro, and compare tendon-derived fibroblasts (TDFs) and bone marrow stromal cells (MSCs) in terms of their ability to populate and migrate on the single and braided ELAC bundles. The results indicated that the ELAC was not cytotoxic; both cell types were able to populate and migrate on the ELAC bundles more efficiently than that observed for random collagen bundles. The braided ELAC constructs were efficiently populated by both TDFs and MSCs in vitro. Therefore, both TDFs and MSCs can be used with the ELAC bundles for tissue engineering purposes.

摘要

美国每年大约有 3300 万例涉及肌肉骨骼组织(包括肌腱和韧带)的损伤。在某些情况下,肌腱和韧带会受到不可逆转的损伤,需要更换具有这些组织天然功能特性的替代品。作为一种生物材料,胶原蛋白一直是组织工程支架的关键成分。如果可以更好地控制组装过程,促进致密、定向组织样结构的合成,胶原蛋白在组织工程中的应用范围将大大扩大。最近,我们实验室开发了一种电化学方法,用于形成具有接近肌腱机械强度的高度定向和密集排列的胶原蛋白束。然而,关于这种电化学定向胶原束(ELAC)在细胞反应方面是否优于随机定向束,目前的信息有限。因此,本研究旨在评估体外胶原束的生物相容性,并比较肌腱来源的成纤维细胞(TDF)和骨髓基质细胞(MSC)在单个和编织 ELAC 束上定植和迁移的能力。结果表明,ELAC 没有细胞毒性;两种细胞类型都能够更有效地定植和迁移到 ELAC 束上,而不是随机胶原束。编织的 ELAC 构建体在体外被 TDF 和 MSC 有效地定植。因此,TDF 和 MSC 都可以与 ELAC 束一起用于组织工程目的。

相似文献

2
Tenogenic differentiation of human MSCs induced by the topography of electrochemically aligned collagen threads.
Biomaterials. 2012 Mar;33(7):2137-44. doi: 10.1016/j.biomaterials.2011.11.066. Epub 2011 Dec 15.
4
In vivo response to electrochemically aligned collagen bioscaffolds.
J Biomed Mater Res B Appl Biomater. 2012 Feb;100(2):400-8. doi: 10.1002/jbm.b.31962. Epub 2011 Dec 16.
6
An electrochemical fabrication process for the assembly of anisotropically oriented collagen bundles.
Biomaterials. 2008 Aug;29(22):3278-88. doi: 10.1016/j.biomaterials.2008.04.028. Epub 2008 May 9.
8
Tenogenesis of bone marrow-, adipose-, and tendon-derived stem cells in a dynamic bioreactor.
Connect Tissue Res. 2016 Nov;57(6):454-465. doi: 10.3109/03008207.2015.1117458. Epub 2016 Mar 30.
10
Mesenchymal Stem Cell Delivery via Topographically Tenoinductive Collagen Biotextile Enhances Regeneration of Segmental Tendon Defects.
Am J Sports Med. 2022 Jul;50(8):2281-2291. doi: 10.1177/03635465221097939. Epub 2022 Jun 1.

引用本文的文献

2
Computational and Experimental Characterization of Aligned Collagen across Varied Crosslinking Degrees.
Micromachines (Basel). 2024 Jun 29;15(7):851. doi: 10.3390/mi15070851.
3
Collagen Alignment via Electro-Compaction for Biofabrication Applications: A Review.
Polymers (Basel). 2022 Oct 12;14(20):4270. doi: 10.3390/polym14204270.
4
Plant Tissues as 3D Natural Scaffolds for Adipose, Bone and Tendon Tissue Regeneration.
Front Bioeng Biotechnol. 2020 Jun 30;8:723. doi: 10.3389/fbioe.2020.00723. eCollection 2020.
5
Biodegradable polymer nanocomposites for ligament/tendon tissue engineering.
J Nanobiotechnology. 2020 Jan 30;18(1):23. doi: 10.1186/s12951-019-0556-1.
6
Current Progress in Tendon and Ligament Tissue Engineering.
Tissue Eng Regen Med. 2019 Jun 26;16(6):549-571. doi: 10.1007/s13770-019-00196-w. eCollection 2019 Dec.
7
Biomaterials in Tendon and Skeletal Muscle Tissue Engineering: Current Trends and Challenges.
Materials (Basel). 2018 Jun 29;11(7):1116. doi: 10.3390/ma11071116.
8
Biomechanical evaluation of a novel suturing scheme for grafting load-bearing collagen scaffolds for rotator cuff repair.
Clin Biomech (Bristol). 2015 Aug;30(7):669-75. doi: 10.1016/j.clinbiomech.2015.05.007. Epub 2015 May 16.
10
Manipulating biological agents and cells in micro-scale volumes for applications in medicine.
Chem Soc Rev. 2013 Jul 7;42(13):5788-808. doi: 10.1039/c3cs60042d.

本文引用的文献

1
A computational approach to edge detection.
IEEE Trans Pattern Anal Mach Intell. 1986 Jun;8(6):679-98.
5
An electrochemical fabrication process for the assembly of anisotropically oriented collagen bundles.
Biomaterials. 2008 Aug;29(22):3278-88. doi: 10.1016/j.biomaterials.2008.04.028. Epub 2008 May 9.
6
A comparison of rabbit mesenchymal stem cells and anterior cruciate ligament fibroblasts responses on combined silk scaffolds.
Biomaterials. 2008 Apr;29(10):1443-53. doi: 10.1016/j.biomaterials.2007.11.023. Epub 2007 Dec 21.
8
A comparison of tenocytes and mesenchymal stem cells for use in flexor tendon tissue engineering.
J Hand Surg Am. 2007 May-Jun;32(5):597-605. doi: 10.1016/j.jhsa.2007.02.018.
9
Restore orthobiologic implant: not recommended for augmentation of rotator cuff repairs.
J Bone Joint Surg Am. 2007 Apr;89(4):786-91. doi: 10.2106/JBJS.F.00315.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验