Suppr超能文献

韩国流感疫情的多主体建模

Multi-agent modeling of the South Korean avian influenza epidemic.

机构信息

Department of Computer Science, State University of New York at Buffalo, 201 Bell Hall, Buffalo, NY 14260-1200, USA.

出版信息

BMC Infect Dis. 2010 Aug 10;10:236. doi: 10.1186/1471-2334-10-236.

Abstract

BACKGROUND

Several highly pathogenic avian influenza (AI) outbreaks have been reported over the past decade. South Korea recently faced AI outbreaks whose economic impact was estimated to be 6.3 billion dollars, equivalent to nearly 50% of the profit generated by the poultry-related industries in 2008. In addition, AI is threatening to cause a human pandemic of potentially devastating proportions. Several studies show that a stochastic simulation model can be used to plan an efficient containment strategy on an emerging influenza. Efficient control of AI outbreaks based on such simulation studies could be an important strategy in minimizing its adverse economic and public health impacts.

METHODS

We constructed a spatio-temporal multi-agent model of chickens and ducks in poultry farms in South Korea. The spatial domain, comprised of 76 (37.5 km x 37.5 km) unit squares, approximated the size and scale of South Korea. In this spatial domain, we introduced 3,039 poultry flocks (corresponding to 2,231 flocks of chickens and 808 flocks of ducks) whose spatial distribution was proportional to the number of birds in each province. The model parameterizes the properties and dynamic behaviors of birds in poultry farms and quarantine plans and included infection probability, incubation period, interactions among birds, and quarantine region.

RESULTS

We conducted sensitivity analysis for the different parameters in the model. Our study shows that the quarantine plan with well-chosen values of parameters is critical for minimize loss of poultry flocks in an AI outbreak. Specifically, the aggressive culling plan of infected poultry farms over 18.75 km radius range is unlikely to be effective, resulting in higher fractions of unnecessarily culled poultry flocks and the weak culling plan is also unlikely to be effective, resulting in higher fractions of infected poultry flocks.

CONCLUSIONS

Our results show that a prepared response with targeted quarantine protocols would have a high probability of containing the disease. The containment plan with an aggressive culling plan is not necessarily efficient, causing a higher fraction of unnecessarily culled poultry farms. Instead, it is necessary to balance culling with other important factors involved in AI spreading. Better estimations for the containment of AI spreading with this model offer the potential to reduce the loss of poultry and minimize economic impact on the poultry industry.

摘要

背景

在过去的十年中,已经报告了几起高致病性禽流感 (AI) 疫情。韩国最近面临的 AI 疫情估计造成了 63 亿美元的经济损失,相当于 2008 年家禽相关产业利润的近 50%。此外,AI 有可能引发潜在破坏性极大的人类大流行。几项研究表明,随机模拟模型可用于规划新兴流感的有效遏制策略。基于此类模拟研究对 AI 疫情进行有效控制,可能是将其对经济和公共卫生的不利影响降至最低的重要策略。

方法

我们构建了韩国家禽养殖场鸡和鸭的时空多主体模型。空间域由 76 个(37.5 公里 x 37.5 公里)单位正方形组成,接近韩国的大小和规模。在这个空间域中,我们引入了 3039 个家禽养殖场(对应于 2231 个鸡养殖场和 808 个鸭养殖场),其空间分布与每个省的鸟类数量成正比。该模型参数化了家禽养殖场和检疫计划中鸟类的特性和动态行为,并包括感染概率、潜伏期、鸟类之间的相互作用和检疫区。

结果

我们对模型中的不同参数进行了敏感性分析。我们的研究表明,在 AI 疫情中,选择适当参数的检疫计划对于最大限度地减少家禽养殖场的损失至关重要。具体来说,在半径 18.75 公里范围内对感染的家禽养殖场进行激进的扑杀计划不太可能有效,导致不必要扑杀的家禽养殖场比例更高,而较弱的扑杀计划也不太可能有效,导致感染的家禽养殖场比例更高。

结论

我们的研究结果表明,有针对性的检疫协议的准备响应将有很高的概率控制疾病。具有激进扑杀计划的遏制计划不一定有效,会导致更高比例的不必要扑杀的家禽养殖场。相反,有必要在 AI 传播涉及的其他重要因素之间取得平衡。通过该模型更好地估计 AI 传播的遏制,有可能减少家禽的损失,并最大限度地减少对家禽行业的经济影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c2d/2924858/e2ab7156fe0f/1471-2334-10-236-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验