Suppr超能文献

氧标记水

O-Labeled water

作者信息

Leung Kam

机构信息

National Center for Biotechnology Information, NLM, NIH, Bethesda, MD

Abstract

Magnetic resonance imaging (MRI) maps information about tissues spatially and functionally. Protons (hydrogen nuclei) are widely used to create images because of their abundance in water molecules, which comprise >80% of most soft tissues. The contrast of proton MRI images depends mainly on the density of nuclear proton spins, the relaxation times of the nuclear magnetization (T1, longitudinal; T2, transverse), the magnetic environment of the tissues, and the blood flow to the tissues. However, insufficient contrast between normal and diseased tissues requires the use of contrast agents. Most contrast agents affect the T1 and T2 relaxation of the surrounding nuclei, mainly the protons of water. T2* is the spin–spin relaxation time composed of variations from molecular interactions and intrinsic magnetic heterogeneities of tissues in the magnetic field (1). Cross-linked iron oxide (CLIO) and other iron oxide formulations affect T2 primarily and lead to a decreased signal. On the other hand, paramagnetic T1 agents, such as gadolinium (Gd) and manganese (Mn), accelerate T1 relaxation and lead to brighter contrast images. The human brain (5% of total body weight) accounts for 20% of total body oxygen consumption (2). Oxygen is consumed to produce water oxidative phosphorylation and reoxidation of reduced molecules in the mitochondria. The cerebral rate of oxygen consumption (CMRO) and the cerebral blood flow (CBF) are sensitive and quantitative indicators of the health of the brain. Reduced cerebral perfusion and oxygen consumption have been observed in neurodegenerative and cerebrovascular diseases. CMRO has been imaged using O positron emission tomography (PET) to monitor the HO concentration in the brain during inhalation of O (3, 4). However, O PET is not popular because of the short half-life (2 min) of O, on-site generation of O, and high background noise (O bound to hemoglobin HO). CMRO has also been measured with O nuclear magnetic resonance (NMR) spectroscopy and MRI after inhalation of O, which is converted to HO (5, 6). O cannot be detected because molecular O is dissolved in the blood or is bound to hemoglobin as O. O is detectable as in HO. O decreases the proton T2 relaxation time of water as the direct method of NMR/MRI measurement. The other method is indirect MRI measurement based on the enhancement of T1p relaxation of protons in water by O. CMRO and CBF can be measured with O NMR spectroscopy and MRI after inhalation of O. CBF can be measured with O NMR spectroscopy and MRI after injection of HO.

摘要

磁共振成像(MRI)在空间和功能上对组织信息进行映射。质子(氢原子核)由于在水分子中含量丰富,而水分子占大多数软组织的80%以上,因此被广泛用于生成图像。质子MRI图像的对比度主要取决于核质子自旋的密度、核磁化的弛豫时间(T1,纵向;T2,横向)、组织的磁环境以及组织的血流情况。然而,正常组织与病变组织之间的对比度不足需要使用造影剂。大多数造影剂会影响周围原子核的T1和T2弛豫,主要是水分子的质子。T2*是由分子相互作用和磁场中组织的固有磁不均匀性引起的自旋 - 自旋弛豫时间(1)。交联氧化铁(CLIO)和其他氧化铁制剂主要影响T2并导致信号降低。另一方面,顺磁性T1造影剂,如钆(Gd)和锰(Mn),会加速T1弛豫并产生对比度更高的明亮图像。人类大脑(占体重的5%)消耗约20%的全身氧气(2)。氧气用于线粒体中氧化磷酸化以及还原分子的再氧化以产生水。脑氧消耗率(CMRO)和脑血流量(CBF)是大脑健康的敏感和定量指标。在神经退行性疾病和脑血管疾病中已观察到脑灌注和氧消耗减少。CMRO已通过15O正电子发射断层扫描(PET)成像,以监测吸入15O期间大脑中的H215O浓度(3,4)。然而,15O PET并不常用,因为15O的半衰期短(约2分钟)、需要现场生成15O以及背景噪声高(15O与血红蛋白结合为HBO15)。吸入15O后,CMRO也已通过15O核磁共振(NMR)光谱和MRI进行测量,15O会转化为H215O(5,6)。由于分子15O溶解在血液中或以O2形式与血红蛋白结合,因此无法检测到15O。15O作为H215O是可检测的。15O作为NMR/MRI测量的直接方法会降低水的质子T2弛豫时间。另一种方法是基于15O对水中质子T1p弛豫的增强进行间接MRI测量。吸入15O后,CMRO和CBF可通过15O NMR光谱和MRI进行测量。注射H215O后,CBF可通过15O NMR光谱和MRI进行测量。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验