Section of Integrative Biology, University of Texas at Austin, Austin, TX, USA.
Heredity (Edinb). 2011 Apr;106(4):649-60. doi: 10.1038/hdy.2010.102. Epub 2010 Aug 11.
Temperature-dependent sex determination (TSD) was first reported in 1966 in an African lizard. It has since been shown that TSD occurs in some fish, several lizards, tuataras, numerous turtles and all crocodilians. Extreme temperatures can also cause sex reversal in several amphibians and lizards with genotypic sex determination. Research in TSD species indicates that estrogen signaling is important for ovary development and that orthologs of mammalian genes have a function in gonad differentiation. Nevertheless, the mechanism that actually transduces temperature into a biological signal for ovary versus testis development is not known in any species. Classical genetics could be used to identify the loci underlying TSD, but only if there is segregating variation for TSD. Here, we use the 'animal model' to analyze inheritance of sexual phenotype in a 13-generation pedigree of captive leopard geckos, Eublepharis macularius, a TSD reptile. We directly show genetic variance and genotype-by-temperature interactions for sex determination. Additive genetic variation was significant at a temperature that produces a female-biased sex ratio (30°C), but not at a temperature that produces a male-biased sex ratio (32.5°C). Conversely, dominance variance was significant at the male-biased temperature (32.5°C), but not at the female-biased temperature (30°C). Non-genetic maternal effects on sex determination were negligible in comparison with additive genetic variance, dominance variance and the primary effect of temperature. These data show for the first time that there is segregating variation for TSD in a reptile and consequently that a quantitative trait locus analysis would be practicable for identifying the genes underlying TSD.
温度依赖型性别决定(TSD)于 1966 年在一种非洲蜥蜴中首次报道。此后,研究表明 TSD 存在于一些鱼类、几种蜥蜴、楔齿蜥、许多海龟和所有鳄鱼中。极端温度也会导致一些具有基因型性别决定的两栖动物和蜥蜴发生性别逆转。对 TSD 物种的研究表明,雌激素信号对于卵巢发育很重要,并且哺乳动物基因的同源物在性腺分化中具有功能。然而,在任何物种中,实际上将温度转化为卵巢与睾丸发育的生物学信号的机制尚不清楚。经典遗传学可用于鉴定 TSD 背后的基因座,但前提是 TSD 存在可分离的变异。在这里,我们使用“动物模型”来分析圈养豹纹守宫(Eublepharis macularius)的一个 13 代谱系中的性表型遗传,豹纹守宫是一种 TSD 爬行动物。我们直接显示了性别决定的遗传方差和基因型与温度的相互作用。在产生雌性偏性比(30°C)的温度下,加性遗传变异是显著的,但在产生雄性偏性比(32.5°C)的温度下则不然。相反,在雄性偏性比(32.5°C)的温度下,显性方差是显著的,但在雌性偏性比(30°C)的温度下则不然。与加性遗传方差、显性方差和温度的主要效应相比,非遗传母体效应对性别决定的影响可以忽略不计。这些数据首次表明,在一种爬行动物中存在 TSD 的可分离变异,因此,进行 TSD 相关基因的数量性状基因座分析是可行的。