College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China.
J Phys Chem A. 2010 Aug 19;114(32):8406-16. doi: 10.1021/jp1000804.
In this work, structures, and properties of Cu(2+) and CuCl(+) hydrates in the gas and aqueous phases have been investigated using the B3LYP method. Contact ion pair (CIP) and solvent-shared ion pair (SSIP) were both taken into account for CuCl(+) hydrates. Our calculations show that Cu(H(2)O)(n) clusters favor a very open four-coordinated structure for n = 5-12 in the gas phase, while a five-coordinated conformer is favored for n > or = 8 in the aqueous phase. An approximate complete solvation shell of Cu(2+) in the aqueous phase needs more than 12 water molecules, while that of CuCl(+) in the aqueous phase needs only about eight water molecules. For CuCl(H(2)O)(n) clusters, the most stable structure is a four-coordinated CIP conformer for n = 4-7 in the gas phase and a five-coordinated CIP conformer for n = 8-10 in the aqueous phase. However, the five-coordinated CIP/h conformer (CIP conformer that the axial chloride atom tends to dissociate) of CuCl(H(2)O)(n) clusters becomes more favorable as n increases to 11. As the hydration process proceeds, the charges on the copper atom of Cu(H(2)O)(n) clusters decrease, while those of CuCl(H(2)O)(n) clusters increase (probably due to the dissociation of Cl(-)). The d-d electron transition and partial charge transition band around 160 nm of the five-coordinated conformer of Cu(H(2)O)(n) clusters and those bands (approximately 170 and approximately 160 nm) of SSIP or five-coordinated CIP/h conformers of CuCl(H(2)O)(n) clusters are coincident with the absorption of Cu(aq) species (approximately 180 nm) resolved from the spectra obtained in trace CuCl(2) (ca. 10(-5) mol x kg(-1)) + LiCl (0-18 mol x kg(-1)) aqueous solution, while those of five-coordinated CIP conformers of CuCl(H(2)O)(n) clusters (n = 8 and 9) around 261 and 247 nm correspond to the absorption of CuCl(aq) species (approximately 250 nm). Our calculated electronic spectra indicate that the typical peak of copper(II)-chloride complexes changes from 180 to 250 nm, and 275 nm, as the process of Cl(-) coordination. For Cu(aq), CuCl(aq), and CuCl(2)(aq) species, the central Cu(II) atom prefers five-coordination.
在这项工作中,使用 B3LYP 方法研究了 Cu(2+)和 CuCl(+)水合物在气相和水溶液中的结构和性质。对于 CuCl(+)水合物,同时考虑了接触离子对(CIP)和溶剂共享离子对(SSIP)。我们的计算表明,Cu(H(2)O)(n) 团簇在气相中 n = 5-12 时优先采用非常开放的四配位结构,而在水溶液中 n >= 8 时则优先采用五配位构象。Cu(2+)在水溶液中的近似完全溶剂化壳需要超过 12 个水分子,而 CuCl(+)在水溶液中只需要大约 8 个水分子。对于 CuCl(H(2)O)(n) 团簇,最稳定的结构是气相中 n = 4-7 的四配位 CIP 构象,而在水溶液中 n = 8-10 的五配位 CIP 构象。然而,随着 n 的增加到 11,CuCl(H(2)O)(n) 团簇的五配位 CIP/h 构象(轴向氯离子倾向于离解的 CIP 构象)变得更加有利。随着水合过程的进行,Cu(H(2)O)(n) 团簇中铜原子的电荷减少,而 CuCl(H(2)O)(n) 团簇的电荷增加(可能是由于 Cl(-)的离解)。五配位构象的 Cu(H(2)O)(n) 团簇的 d-d 电子跃迁和部分电荷跃迁带在 160nm 左右,以及 SSIP 或 CuCl(H(2)O)(n) 团簇的五配位 CIP/h 构象的这些带(约 170nm 和约 160nm)与从痕量 CuCl(2)(约 10(-5)mol x kg(-1))+LiCl(0-18mol x kg(-1))水溶液中解析出的 Cu(aq)物种(约 180nm)的吸收一致,而 CuCl(H(2)O)(n) 团簇(n = 8 和 9)的五配位 CIP 构象在 261nm 和 247nm 处的吸收对应于CuCl(aq)物种(约 250nm)。我们计算的电子光谱表明,随着 Cl(-)配位过程的进行,铜(II)-氯化物配合物的典型峰从 180nm 变为 250nm 和 275nm。对于 Cu(aq)、CuCl(aq)和 CuCl(2)(aq)物种,中心 Cu(II)原子优先采用五配位。