Materials and Process Simulation Center, California Institute of Technology, Pasadena, California 91125, USA.
J Phys Chem A. 2009 Aug 27;113(34):9559-67. doi: 10.1021/jp904816d. Epub 2009 Aug 5.
We use density functional theory (B3LYP) and the COSMO continuum solvent model to characterize the structure and stability of the hydrated Cu(II) complexes Cu(MeNH(2))(H(2)O)(n-1) and Cu(OH)(x)(H(2)O)(n-x) (x = 1-3) as a function of metal coordination number (4-6) and cluster size (n = 4-8, 18). The small clusters with n = 4-8 are found to be the most stable in the nearly square-planar four-coordinate configuration, except for Cu(OH)(3)(H(2)O), which is three-coordinate. In the presence of the two full hydration shells (n = 18), however, the five-coordinate square-pyramidal geometry is the most favorable for Cu(MeNH(2))(2+) (5, 6) and Cu(OH)(+) (5, 4, 6), and the four-coordinate geometry is the most stable for Cu(OH)(2) (4, 5) and Cu(OH)(3)(-) (4). (Other possible coordination numbers for these complexes in the aqueous phase are shown in parentheses.) A small energetic difference between these structures (0.23-2.65 kcal/mol) suggests that complexes with different coordination numbers may coexist in solution. Using two full hydration shells around the Cu(2+) ion (18 ligands) gives Gibbs free energies of aqueous reactions that are in excellent agreement with experiment. The mean unsigned error is 0.7 kcal/mol for the three consecutive hydrolysis steps of Cu(2+) and the complexation of Cu(2+) with methylamine. Conversely, calculations for the complexes with only one coordination shell (four equatorial ligands) lead to a mean unsigned error that is >6.0 kcal/mol. Thus, the explicit treatment of the first and the second shells is critical for the accurate prediction of structural and thermodynamic properties of Cu(II) species in aqueous solution.
我们使用密度泛函理论(B3LYP)和 COSMO 连续溶剂模型来描述水合 Cu(II)配合物 Cu(MeNH(2))(H(2)O)(n-1) 和 Cu(OH)(x)(H(2)O)(n-x)(x = 1-3)的结构和稳定性,这些配合物的金属配位数(4-6)和团簇大小(n = 4-8,18)均作为函数进行研究。研究发现,在几乎平面四配位构型中,具有 n = 4-8 的小团簇是最稳定的,除了 Cu(OH)(3)(H(2)O),其为三配位。然而,在存在两个完整水合壳(n = 18)的情况下,五配位的正方锥几何形状对 Cu(MeNH(2))(2+)(5,6)和 Cu(OH)(+)(5,4,6)最有利,而四配位几何形状对 Cu(OH)(2)(4,5)和 Cu(OH)(3)(-)(4)最稳定。(这些配合物在水溶液中可能具有的其他配位数在括号中显示。)这些结构之间的能量差异很小(0.23-2.65 kcal/mol),表明具有不同配位数的配合物可能在溶液中共存。在 Cu(2+)离子周围使用两个完整的水合壳(18 个配体),可以得到与实验非常吻合的水相反应的吉布斯自由能。Cu(2+)的三个连续水解步骤和 Cu(2+)与甲胺的络合的平均未签名误差为 0.7 kcal/mol。相反,对于仅具有一个配位壳(四个赤道配体)的配合物的计算导致平均未签名误差大于 6.0 kcal/mol。因此,对于准确预测水溶液中 Cu(II)物种的结构和热力学性质,对第一和第二壳层的显式处理至关重要。