Department of Physiology, Tarbiat Modares University, Tehran, Iran.
J Med Syst. 2011 Aug;35(4):483-8. doi: 10.1007/s10916-009-9384-4. Epub 2009 Nov 4.
Arterial blood gas (ABG) has an important role in the clinical assessment of patients with acute exacerbations of chronic obstructive pulmonary disease (AECOPD). Because of ABG complications, an alternative method is beneficial. We have trained and tested five artificial neural networks (ANNs) with venous blood gas (VBG) values (pH, PCO(2), HCO(3), PO(2), and O(2) saturation) as inputs, to predict ABG values in patients with AECOPD. Venous and arterial blood samples were collected from 132 patients. Using the data of 106 patients, the ANNs were trained and validated by back-propagation algorithm. Subsequently, data from the remainder 26 patients was used for testing the networks. The ability of ANNs to predict ABG values and to detect significant hypercarbia was assessed and the results were compared with a linear regression model. Our results indicate that the ANNs provide an accurate method for predicting ABG values from VBG values and detecting hypercarbia in AECOPD.
动脉血气(ABG)在慢性阻塞性肺疾病急性加重(AECOPD)患者的临床评估中具有重要作用。由于 ABG 并发症,替代方法是有益的。我们已经训练和测试了五个人工神经网络(ANNs),使用静脉血气(VBG)值(pH、PCO(2)、HCO(3)、PO(2)和 O(2)饱和度)作为输入,以预测 AECOPD 患者的 ABG 值。从 132 名患者中采集静脉和动脉血样。使用 106 名患者的数据,通过反向传播算法对 ANNs 进行了训练和验证。随后,使用其余 26 名患者的数据对网络进行了测试。评估了 ANNs 预测 ABG 值和检测显著高碳酸血症的能力,并将结果与线性回归模型进行了比较。我们的结果表明,ANNs 提供了一种从 VBG 值预测 ABG 值和检测 AECOPD 中高碳酸血症的准确方法。