Suppr超能文献

使用人工神经网络预测慢性丙型肝炎患者联合治疗的结果。

Predicting the outcomes of combination therapy in patients with chronic hepatitis C using artificial neural network.

作者信息

Sargolzaee Aval Forough, Behnaz Nazanin, Raoufy Mohamad Reza, Alavian Seyed Moayed

机构信息

Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, IR Iran.

Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, IR Iran.

出版信息

Hepat Mon. 2014 Jun 1;14(6):e17028. doi: 10.5812/hepatmon.17028. eCollection 2014 Jun.

Abstract

BACKGROUND

Treatment with Peginterferon Alpha-2b plus Ribavirin is the current standard therapy for chronic hepatitis C (CHC). However, many host related and viral parameters are associated with different outcomes of combination therapy.

OBJECTIVES

The aim of this study was to develop an artificial neural network (ANN) model to predetermine individual responses to therapy based on patient's demographics and laboratory data.

PATIENTS AND METHODS

This case-control study was conducted in Tehran, Iran, on 139 patients divided into sustained virologic response (SVR) (n = 50), relapse (n = 50) and non-response (n = 39) groups according to their response to combination therapy for 48 weeks. The ANN was trained 300 times (epochs) using clinical data. To test the ANN performance, the part of data that was selected randomly and not used in training process was entered to the ANN and the outputs were compared with real data.

RESULTS

Hemoglobin (P < 0.001), cholesterol (P = 0.001) and IL-28b genotype (P = 0.002) values had significant differences between the three groups. Significant predictive factor(s) for each group were hemoglobin for SVR (OR: 1.517; 95% CI: 1.233-1.868; P < 0.001), IL-28b genotype for relapse (OR: 0.577; 95% CI: 0.339-0.981; P = 0.041) and hemoglobin (OR: 0.824; 95% CI: 0.693-0.980; P = 0.017) and IL-28b genotype (OR: 2.584; 95% CI: 1.430-4.668;P = 0.001) for non-response. The accuracy of ANN to predict SVR, relapse and non-response were 93%, 90%, and 90%, respectively.

CONCLUSIONS

Using baseline laboratory data and host characteristics, ANN has been shown as an accurate model to predict treatment outcome, which can lead to appropriate decision making and decrease the frequency of ineffective treatment in patients with chronic hepatitis C virus (HCV) infection.

摘要

背景

聚乙二醇干扰素α-2b联合利巴韦林治疗是目前慢性丙型肝炎(CHC)的标准疗法。然而,许多宿主相关和病毒参数与联合治疗的不同结果相关。

目的

本研究旨在开发一种人工神经网络(ANN)模型,根据患者的人口统计学和实验室数据预先确定个体对治疗的反应。

患者和方法

本病例对照研究在伊朗德黑兰对139例患者进行,根据他们对48周联合治疗的反应分为持续病毒学应答(SVR)组(n = 50)、复发组(n = 50)和无应答组(n = 39)。使用临床数据对人工神经网络进行300次(轮次)训练。为测试人工神经网络的性能,将随机选择且未用于训练过程的数据部分输入人工神经网络,并将输出结果与实际数据进行比较。

结果

三组之间血红蛋白(P < 0.001)、胆固醇(P = 0.001)和IL-28b基因型(P = 0.002)值存在显著差异。每组的显著预测因素分别为:SVR组是血红蛋白(OR:1.517;95%CI:1.233 - 1.868;P < 0.001),复发组是IL-28b基因型(OR:0.577;95%CI:0.339 - 0.981;P = 0.041),无应答组是血红蛋白(OR:0.824;95%CI:0.693 - 0.980;P = 0.017)和IL-28b基因型(OR:2.584;95%CI:1.430 - 4.668;P = 0.001)。人工神经网络预测SVR、复发和无应答的准确率分别为93%、90%和90%。

结论

利用基线实验室数据和宿主特征,人工神经网络已被证明是一种预测治疗结果的准确模型,这可以导致适当的决策制定并降低慢性丙型肝炎病毒(HCV)感染患者无效治疗的频率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9233/4071357/0f5a76d2b1c5/hepatmon-14-06-17028-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验