Suppr超能文献

基于遗传算法训练的人工神经网络在结核病诊断中的应用。

Tuberculosis disease diagnosis using artificial neural network trained with genetic algorithm.

机构信息

Department of Computer Engineering, Sakarya University, 54187, Adapazari, Turkey.

出版信息

J Med Syst. 2011 Jun;35(3):329-32. doi: 10.1007/s10916-009-9369-3. Epub 2009 Aug 28.

Abstract

Tuberculosis is a common and often deadly infectious disease caused by mycobacterium; in humans it is mainly Mycobacterium tuberculosis (Wikipedia 2009). It is a great problem for most developing countries because of the low diagnosis and treatment opportunities. Tuberculosis has the highest mortality level among the diseases caused by a single type of microorganism. Thus, tuberculosis is a great health concern all over the world, and in Turkey as well. This article presents a study on tuberculosis diagnosis, carried out with the help of multilayer neural networks (MLNNs). For this purpose, an MLNN with two hidden layers and a genetic algorithm for training algorithm has been used. The tuberculosis dataset was taken from a state hospital's database, based on patient's epicrisis reports.

摘要

结核病是一种由分枝杆菌引起的常见且常致命的传染病,在人类中主要是结核分枝杆菌(维基百科 2009 年)。由于诊断和治疗机会较少,它是大多数发展中国家的一个重大问题。结核病是由单一类型微生物引起的疾病中死亡率最高的疾病。因此,结核病是全世界和土耳其的一个重大健康问题。本文介绍了一项利用多层神经网络(MLNN)进行结核病诊断的研究。为此,使用了一个具有两个隐藏层和遗传算法作为训练算法的 MLNN。结核病数据集来自一家州立医院的数据库,基于患者的病历报告。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验