Suppr超能文献

机器学习在 2 型糖尿病诊断中的支持作用。

Machine Learning as a Support for the Diagnosis of Type 2 Diabetes.

机构信息

Dipartimento di Scienze Aziendali, Management and Innovation Systems, Università degli Studi di Salerno, 84084 Fisciano, Italy.

BC Soft, Centro Direzionale, Via Taddeo da Sessa Isola F10, 80143 Napoli, Italy.

出版信息

Int J Mol Sci. 2023 Apr 5;24(7):6775. doi: 10.3390/ijms24076775.

Abstract

Diabetes is a chronic, metabolic disease characterized by high blood sugar levels. Among the main types of diabetes, type 2 is the most common. Early diagnosis and treatment can prevent or delay the onset of complications. Previous studies examined the application of machine learning techniques for prediction of the pathology, and here an artificial neural network shows very promising results as a possible valuable aid in the management and prevention of diabetes. Additionally, its superior ability for long-term predictions makes it an ideal choice for this field of study. We utilized machine learning methods to uncover previously undiscovered associations between an individual's health status and the development of type 2 diabetes, with the goal of accurately predicting its onset or determining the individual's risk level. Our study employed a binary classifier, trained on scratch, to identify potential nonlinear relationships between the onset of type 2 diabetes and a set of parameters obtained from patient measurements. Three datasets were utilized, i.e., the National Center for Health Statistics' (NHANES) biennial survey, MIMIC-III and MIMIC-IV. These datasets were then combined to create a single dataset with the same number of individuals with and without type 2 diabetes. Since the dataset was balanced, the primary evaluation metric for the model was accuracy. The outcomes of this study were encouraging, with the model achieving accuracy levels of up to 86% and a ROC AUC value of 0.934. Further investigation is needed to improve the reliability of the model by considering multiple measurements from the same patient over time.

摘要

糖尿病是一种慢性代谢性疾病,其特征是血糖水平升高。在主要的糖尿病类型中,2 型糖尿病最为常见。早期诊断和治疗可以预防或延缓并发症的发生。先前的研究考察了机器学习技术在预测病理学方面的应用,而这里的人工神经网络显示出非常有前景的结果,作为糖尿病管理和预防的一种有价值的辅助手段。此外,它在长期预测方面的卓越能力使其成为该研究领域的理想选择。我们利用机器学习方法来揭示个体健康状况与 2 型糖尿病发展之间以前未被发现的关联,旨在准确预测其发病或确定个体的风险水平。我们的研究使用了一个从头开始训练的二进制分类器,来识别 2 型糖尿病发病与从患者测量中获得的一组参数之间的潜在非线性关系。我们使用了三个数据集,即国家健康统计中心(NHANES)的两年一次的调查、MIMIC-III 和 MIMIC-IV。然后将这些数据集组合起来,创建了一个具有相同数量的 2 型糖尿病患者和非 2 型糖尿病患者的单一数据集。由于数据集是平衡的,因此模型的主要评估指标是准确性。该研究的结果令人鼓舞,模型的准确率高达 86%,ROC AUC 值为 0.934。需要进一步研究,通过考虑同一患者随时间的多次测量来提高模型的可靠性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e52/10095542/b4bbe709692d/ijms-24-06775-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验