Department of Instrumentation Engineering, Madras Institute of Technology Campus, Anna University, Chennai 600044, India.
J Med Syst. 2011 Feb;35(1):127-33. doi: 10.1007/s10916-009-9349-7. Epub 2009 Aug 5.
In this work, an attempt has been made to enhance the diagnostic relevance of spirometric pulmonary function test using neural networks and Principal Component Analysis (PCA). For this study, flow-volume curves (N = 175) using spirometers were generated under standard recording protocol. A method based on neural network is used to predict the most significant parameter, FEV(1). Further, PCA is used to analyze the interdependency of the parameters in the measured and predicted datasets. Results show that the back propagation neural network is able to predict FEV(1) both in normal and abnormal cases. The variation in the magnitude and direction of parameters in the contribution of the principal components shows that FEV(1) is a significant discriminator of normal and abnormal datasets and is further confirmed by the percentage variance in the first few principal components. It appears that this method of prediction and principal component analysis on the measured and predicted datasets could be useful for spirometric pulmonary function test with incomplete data.
在这项工作中,尝试使用神经网络和主成分分析(PCA)来提高肺功能测试的诊断相关性。为此,使用肺量计根据标准记录协议生成了流量-容积曲线(N=175)。使用基于神经网络的方法来预测最重要的参数,FEV(1)。进一步,使用 PCA 来分析在测量和预测数据集中的参数的相互依赖关系。结果表明,反向传播神经网络能够预测正常和异常情况下的 FEV(1)。主成分贡献中参数的大小和方向的变化表明,FEV(1)是正常和异常数据集的重要判别器,并且前几个主成分的百分比方差进一步证实了这一点。似乎这种对测量和预测数据集的预测和主成分分析的方法对于具有不完整数据的肺功能测试可能是有用的。