Ghosh-Dastidar Samanwoy, Adeli Hojjat, Dadmehr Nahid
Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA.
IEEE Trans Biomed Eng. 2008 Feb;55(2 Pt 1):512-8. doi: 10.1109/TBME.2007.905490.
A novel principal component analysis (PCA)-enhanced cosine radial basis function neural network classifier is presented. The two-stage classifier is integrated with the mixed-band wavelet-chaos methodology, developed earlier by the authors, for accurate and robust classification of electroencephalogram (EEGs) into healthy, ictal, and interictal EEGs. A nine-parameter mixed-band feature space discovered in previous research for effective EEG representation is used as input to the two-stage classifier. In the first stage, PCA is employed for feature enhancement. The rearrangement of the input space along the principal components of the data improves the classification accuracy of the cosine radial basis function neural network (RBFNN) employed in the second stage significantly. The classification accuracy and robustness of the classifier are validated by extensive parametric and sensitivity analysis. The new wavelet-chaos-neural network methodology yields high EEG classification accuracy (96.6%) and is quite robust to changes in training data with a low standard deviation of 1.4%. For epilepsy diagnosis, when only normal and interictal EEGs are considered, the classification accuracy of the proposed model is 99.3%. This statistic is especially remarkable because even the most highly trained neurologists do not appear to be able to detect interictal EEGs more than 80% of the times.
提出了一种新型的主成分分析(PCA)增强型余弦径向基函数神经网络分类器。该两阶段分类器与作者之前开发的混合带小波 - 混沌方法相结合,用于将脑电图(EEG)准确且稳健地分类为健康、发作期和发作间期的脑电图。在先前研究中发现的用于有效表示脑电图的九参数混合带特征空间被用作两阶段分类器的输入。在第一阶段,采用主成分分析进行特征增强。沿着数据的主成分对输入空间进行重新排列,显著提高了第二阶段所采用的余弦径向基函数神经网络(RBFNN)的分类准确率。通过广泛的参数和敏感性分析验证了分类器的分类准确率和稳健性。新的小波 - 混沌 - 神经网络方法产生了较高的脑电图分类准确率(96.6%),并且对训练数据的变化具有很强的稳健性,标准差低至1.4%。对于癫痫诊断,当仅考虑正常和发作间期的脑电图时,所提出模型的分类准确率为99.3%。这一统计数据尤其显著,因为即使是训练有素的神经科医生似乎也无法在超过80%的时间内检测出发作间期的脑电图。