Suppr超能文献

基于概率神经网络的抗生素电阻率检测。

Detection of resistivity for antibiotics by probabilistic neural networks.

机构信息

Departmant of Microbiology, Faculty of Medicine, Kocaeli University, Umuttepe Campus, 41380 Kocaeli, Turkey.

出版信息

J Med Syst. 2011 Feb;35(1):87-91. doi: 10.1007/s10916-009-9344-z. Epub 2009 Jul 11.

Abstract

This paper presents the use of probabilistic neural networks (PNNs) for detection of resistivity for antibiotics (resistant and sensitive). The PNN is trained on the resistivity or sensitivity to the antibiotics of each record in the Salmonella database. Estimation of the whole parameter space for the PNN was performed by the maximum-likelihood (ML) estimation method. The expectation-maximization (EM) approach can help to achieve the ML estimation via iterative computation. Resistivity and sensitivity of the three antibiotics (ampicillin, chloramphenicol disks and trimethoprim-sulfamethoxazole) were classified with high accuracies by the PNN. The obtained results demonstrated the success of the PNN to help in detection of resistivity for antibiotics.

摘要

本文提出了使用概率神经网络(PNN)来检测抗生素(耐药和敏感)的电阻率。PNN 是基于沙门氏菌数据库中每个记录的电阻率或对抗生素的敏感性进行训练的。通过最大似然(ML)估计方法对 PNN 的整个参数空间进行了估计。期望最大化(EM)方法可以通过迭代计算帮助实现 ML 估计。PNN 可以非常准确地对三种抗生素(氨苄青霉素、氯霉素盘和甲氧苄啶-磺胺甲恶唑)的电阻率和敏感性进行分类。所得结果表明,PNN 成功地有助于检测抗生素的电阻率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验