Department of Physiology, Faculty of Medicine, Kocaeli University, Umut Tepe Campus, 31380 Kocaeli, Turkey.
J Med Syst. 2010 Oct;34(5):967-73. doi: 10.1007/s10916-009-9312-7. Epub 2009 May 12.
This paper presents the use of multiclass support vector machines (SVMs) for diagnosis of spirometric patterns (normal, restrictive, obstructive). The SVM decisions were fused using the error correcting output codes (ECOC). The multiclass SVM with the ECOC was trained on three spirometric parameters (forced expiratory volume in 1s--FEV1, forced vital capacity--FVC and FEV1/FVC ratio). The total classification accuracy of the SVM is 97.32%. The obtained results confirmed the validity of the SVMs to help in clinical decision-making.
本文提出了使用多类支持向量机(SVM)对肺量计模式(正常、限制、阻塞)进行诊断。使用纠错输出码(ECOC)融合 SVM 决策。多类 SVM 与 ECOC 一起训练三个肺量计参数(1 秒用力呼气量 FEV1、用力肺活量 FVC 和 FEV1/FVC 比值)。SVM 的总分类准确率为 97.32%。得到的结果证实了 SVM 有助于临床决策的有效性。