Medicine, Division of Respirology, University of Toronto, Toronto, Ontario, Canada.
Department of Medicine, University Health Network, Toronto, Ontario, Canada.
BMJ Open Respir Res. 2022 Dec;9(1). doi: 10.1136/bmjresp-2022-001396.
Spirometry and plethysmography are the gold standard pulmonary function tests (PFT) for diagnosis and management of lung disease. Due to the inaccessibility of plethysmography, spirometry is often used alone but this leads to missed or misdiagnoses as spirometry cannot identify restrictive disease without plethysmography. We aimed to develop a deep learning model to improve interpretation of spirometry alone.
We built a multilayer perceptron model using full PFTs from 748 patients, interpreted according to international guidelines. Inputs included spirometry (forced vital capacity, forced expiratory volume in 1 s, forced mid-expiratory flow), plethysmography (total lung capacity, residual volume) and biometrics (sex, age, height). The model was developed with 2582 PFTs from 477 patients, randomly divided into training (80%), validation (10%) and test (10%) sets, and refined using 1245 previously unseen PFTs from 271 patients, split 50/50 as validation (136 patients) and test (135 patients) sets. Only one test per patient was used for each of 10 experiments conducted for each input combination. The final model was compared with interpretation of 82 spirometry tests by 6 trained pulmonologists and a decision tree.
Accuracies from the first 477 patients were similar when inputs included biometrics+spirometry+plethysmography (95%±3%) vs biometrics+spirometry (90%±2%). Model refinement with the next 271 patients improved accuracies with biometrics+pirometry (95%±2%) but no change for biometrics+spirometry+plethysmography (95%±2%). The final model significantly outperformed (94.67%±2.63%, p<0.01 for both) interpretation of 82 spirometry tests by the decision tree (75.61%±0.00%) and pulmonologists (66.67%±14.63%).
Deep learning improves the diagnostic acumen of spirometry and classifies lung physiology better than pulmonologists with accuracies comparable to full PFTs.
肺活量测定法和体积描记法是诊断和管理肺部疾病的金标准肺功能测试(PFT)。由于体积描记法难以获得,因此通常单独使用肺活量测定法,但这会导致漏诊或误诊,因为没有体积描记法,肺活量测定法无法识别限制性疾病。我们旨在开发一种深度学习模型,以改善单独进行肺活量测定法的解释。
我们使用来自 748 名患者的完整 PFT 构建了多层感知器模型,并根据国际指南进行了解释。输入包括肺活量测定法(用力肺活量、1 秒用力呼气量、用力中期呼气流速)、体积描记法(肺总量、残气量)和生物统计学指标(性别、年龄、身高)。该模型是使用来自 477 名患者的 2582 个 PFT 开发的,随机分为训练(80%)、验证(10%)和测试(10%)集,并使用来自 271 名患者的 1245 个先前未见的 PFT 进行了细化,分为 50/50 的验证(136 名患者)和测试(135 名患者)集。对于每个输入组合进行的 10 次实验中的每一次,每个患者仅使用一次测试。最终模型与 6 名经过培训的肺科医生和决策树对 82 次肺活量测定法测试的解释进行了比较。
在前 477 名患者中,当输入包括生物统计学指标+肺活量测定法+体积描记法时,准确率相似(95%±3%),而当输入包括生物统计学指标+肺活量测定法时,准确率为 90%±2%。使用接下来的 271 名患者对模型进行细化,提高了生物统计学指标+体积描记法的准确率(95%±2%),但生物统计学指标+肺活量测定法+体积描记法的准确率没有变化(95%±2%)。最终模型的性能明显优于决策树(p<0.01)和肺科医生(p<0.01)对 82 次肺活量测定法测试的解释,准确率分别为 94.67%±2.63%和 66.67%±14.63%。
深度学习提高了肺活量测定法的诊断能力,能够更好地对肺生理学进行分类,其准确率与完整的 PFT 相当。