Suppr超能文献

数字乳腺摄影中使用特征选择和集成方法诊断乳腺肿块。

Diagnosing breast masses in digital mammography using feature selection and ensemble methods.

机构信息

National Yunlin University of Science and Technology, Yunlin, Taiwan.

出版信息

J Med Syst. 2012 Apr;36(2):569-77. doi: 10.1007/s10916-010-9518-8. Epub 2010 May 14.

Abstract

Methods that can accurately predict breast cancer are greatly needed and good prediction techniques can help to predict breast cancer more accurately. In this study, we used two feature selection methods, forward selection (FS) and backward selection (BS), to remove irrelevant features for improving the results of breast cancer prediction. The results show that feature reduction is useful for improving the predictive accuracy and density is irrelevant feature in the dataset where the data had been identified on full field digital mammograms collected at the Institute of Radiology of the University of Erlangen-Nuremberg between 2003 and 2006. In addition, decision tree (DT), support vector machine-sequential minimal optimization (SVM-SMO) and their ensembles were applied to solve the breast cancer diagnostic problem in an attempt to predict results with better performance. The results demonstrate that ensemble classifiers are more accurate than a single classifier.

摘要

方法,可以准确地预测乳腺癌是非常需要的,良好的预测技术可以帮助更准确地预测乳腺癌。在这项研究中,我们使用了两种特征选择方法,前向选择(FS)和后向选择(BS),以去除不相关的特征,提高乳腺癌预测的结果。结果表明,特征减少对于提高预测准确性是有用的,密度是无关特征在数据集,数据已经确定了在全数字乳腺摄影领域的研究所放射学的纽伦堡大学之间 2003 年和 2006 年。此外,决策树(DT),支持向量机-顺序最小优化(SVM-SMO)及其集成被应用于解决乳腺癌诊断问题,试图预测结果具有更好的性能。结果表明,集成分类器比单个分类器更准确。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验