通过具有CEM和超声整合的可解释机器学习模型提高乳腺癌腋窝淋巴结转移预测的特异性

Enhancing Specificity in Predicting Axillary Lymph Node Metastasis in Breast Cancer through an Interpretable Machine Learning Model with CEM and Ultrasound Integration.

作者信息

Xu Weimin, Zheng Bowen, Wen Chanjuan, Zeng Hui, Wang Sina, He Zilong, Liao Xin, Chen Weiguo, Li Yingjia, Qin Genggeng

机构信息

Department of Radiology, Nanfang Hospital, Southern Medical University, Guangzhou, China.

Department of Ultrasonic Medicine, NanfangHospital, Southern Medical University, Guangzhou, China.

出版信息

Technol Cancer Res Treat. 2025 Jan-Dec;24:15330338251334735. doi: 10.1177/15330338251334735. Epub 2025 Apr 17.

Abstract

IntroductionThe study aims to evaluate the performance of an interpretable machine learning model in predicting preoperative axillary lymph node metastasis using primary breast cancer and lymph node features derived from contrast-enhanced mammography (CEM) and ultrasound (US) breast imaging reporting and data systems (BI-RADS).MethodsThis retrospective study included patients diagnosed with primary breast cancer. Two experienced radiologists extracted the BI-RADS features from the largest cross-section of the lesions and axillary lymph nodes based on CEM and US images, creating three datasets. Each dataset will train six base models to predict axillary lymph nodes, with pathological results serving as the gold standard. The top three models were used to train the five ensemble models. Additionally, SHapley Additive exPlanations (SHAP) was used to interpret the optimal model. The receiver-operating characteristic curve (ROC) and AUC were used to evaluate model performance.ResultsThis study involved 292 female patients, of whom 99 had axillary lymph node metastasis and 193 did not. The combination of CEM and ultrasound BI-RADS demonstrated the best performance in predicting axillary lymph node metastasis. Among these, the LightGBM achieved the highest AUC (0.762) and specificity (86.67%, while the ensemble model using RF as the meta-model had an AUC (0.754) and specificity (83.33%. The most important variables identified by SHAP were the long diameters of the lymph nodes in the CEM recombined image, along with their complete morphology in the low-energy image.ConclusionThe machine learning model using CEM and US BI-RADS features accurately predicted axillary lymph node metastasis before surgery, thereby serving as a valuable tool for clinical decision-making in patients with breast cancer.

摘要

引言

本研究旨在评估一种可解释的机器学习模型在利用原发性乳腺癌以及源自乳腺对比增强钼靶(CEM)和超声(US)乳腺影像报告和数据系统(BI-RADS)的淋巴结特征预测术前腋窝淋巴结转移方面的性能。

方法

这项回顾性研究纳入了被诊断为原发性乳腺癌的患者。两名经验丰富的放射科医生基于CEM和US图像从病变和腋窝淋巴结的最大横截面提取BI-RADS特征,创建了三个数据集。每个数据集将训练六个基础模型以预测腋窝淋巴结,病理结果作为金标准。使用排名前三的模型训练五个集成模型。此外,使用SHapley加性解释(SHAP)来解释最优模型。采用受试者操作特征曲线(ROC)和AUC评估模型性能。

结果

本研究涉及292名女性患者,其中99例有腋窝淋巴结转移,193例无转移。CEM和超声BI-RADS的组合在预测腋窝淋巴结转移方面表现最佳。其中,LightGBM的AUC最高(0.762),特异性为86.67%,而以随机森林(RF)作为元模型的集成模型的AUC为0.754,特异性为83.33%。SHAP识别出的最重要变量是CEM重组图像中淋巴结的长径以及低能量图像中它们的完整形态。

结论

使用CEM和US BI-RADS特征的机器学习模型准确预测了术前腋窝淋巴结转移,从而成为乳腺癌患者临床决策的有价值工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ce44/12035205/dacccbae15a4/10.1177_15330338251334735-fig1.jpg

相似文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索