Suppr超能文献

高、低酒精摄入大鼠 10 号染色体 QTL 区域候选基因的精细定位和表达。

Fine mapping and expression of candidate genes within the chromosome 10 QTL region of the high and low alcohol-drinking rats.

机构信息

Department of Medicine, Indiana University School of Medicine, Medical Research and Library Building, Indianapolis, IN 46202, USA.

出版信息

Alcohol. 2010 Sep;44(6):477-85. doi: 10.1016/j.alcohol.2010.06.004. Epub 2010 Aug 12.

Abstract

The high and low alcohol-drinking (HAD and LAD) rats were selectively bred for differences in alcohol intake. The HAD/LAD rats originated from the N/Nih heterogeneous stock developed from intercrossing eight inbred rat strains. The HAD×LAD F2 were genotyped, and a powerful analytical approach, using ancestral recombination and F2 recombination, was used to narrow a quantitative trait loci (QTL) for alcohol drinking to a 2-cM region on distal chromosome 10 that was in common in the HAD1/LAD1 and HAD2/LAD2 analyses. Quantitative real-time PCR was used to examine mRNA expression of six candidate genes (Crebbp, Trap1, Gnptg, Clcn7, Fahd1, and Mapk8ip3) located within the narrowed QTL region in the HAD1/LAD1 rats. Expression was examined in five brain regions, including the nucleus accumbens, amygdala, caudate putamen, hippocampus, and prefrontal cortex. All six genes showed differential expression in at least one brain region. Of the genes tested in this study, Crebbp and Mapk8ip3 may be the most promising candidates with regard to alcohol drinking.

摘要

高酒精和低酒精摄入(HAD 和 LAD)大鼠是通过对酒精摄入量的差异进行选择性繁殖而培育出来的。HAD/LAD 大鼠源自 N/Nih 异质品系,由 8 个近交系大鼠杂交而成。对 HAD×LAD F2 进行了基因分型,并采用祖先重组和 F2 重组的强大分析方法,将酒精摄入的数量性状基因座(QTL)缩小到第 10 号染色体远端的 2-cM 区域,该区域在 HAD1/LAD1 和 HAD2/LAD2 分析中是共同存在的。实时定量 PCR 用于检测位于 HAD1/LAD1 大鼠缩小的 QTL 区域内的六个候选基因(Crebbp、Trap1、Gnptg、Clcn7、Fahd1 和 Mapk8ip3)的 mRNA 表达。在包括伏隔核、杏仁核、尾壳核、海马和前额皮质在内的五个脑区检查了表达情况。所有六个基因在至少一个脑区都表现出差异表达。在本研究中测试的基因中,Crebbp 和 Mapk8ip3 可能是与饮酒最相关的最有希望的候选基因。

相似文献

1
Fine mapping and expression of candidate genes within the chromosome 10 QTL region of the high and low alcohol-drinking rats.
Alcohol. 2010 Sep;44(6):477-85. doi: 10.1016/j.alcohol.2010.06.004. Epub 2010 Aug 12.
2
Analyses of quantitative trait loci contributing to alcohol preference in HAD1/LAD1 and HAD2/LAD2 rats.
Alcohol Clin Exp Res. 2003 Nov;27(11):1710-7. doi: 10.1097/01.ALC.0000097161.51093.71.
5
Identification of candidate genes for alcohol preference by expression profiling of congenic rat strains.
Alcohol Clin Exp Res. 2007 Jul;31(7):1089-98. doi: 10.1111/j.1530-0277.2007.00397.x. Epub 2007 Apr 19.
6
Urocortin 1 expression in five pairs of rat lines selectively bred for differences in alcohol drinking.
Psychopharmacology (Berl). 2005 Sep;181(3):511-7. doi: 10.1007/s00213-005-0011-x. Epub 2005 Oct 12.

引用本文的文献

2
Using Heterogeneous Stocks for Fine-Mapping Genetically Complex Traits.
Methods Mol Biol. 2019;2018:233-247. doi: 10.1007/978-1-4939-9581-3_11.
3
Analyses of differentially expressed genes after exposure to acute stress, acute ethanol, or a combination of both in mice.
Alcohol. 2017 Feb;58:139-151. doi: 10.1016/j.alcohol.2016.08.008. Epub 2016 Dec 16.
4
Heterogeneous Stock Populations for Analysis of Complex Traits.
Methods Mol Biol. 2017;1488:31-44. doi: 10.1007/978-1-4939-6427-7_2.
5
Rodent models of genetic contributions to motivation to abuse alcohol.
Nebr Symp Motiv. 2014;61:5-29. doi: 10.1007/978-1-4939-0653-6_2.
6
QTL mapping in outbred populations: successes and challenges.
Physiol Genomics. 2014 Feb 1;46(3):81-90. doi: 10.1152/physiolgenomics.00127.2013. Epub 2013 Dec 10.
7
Gene expression within the extended amygdala of 5 pairs of rat lines selectively bred for high or low ethanol consumption.
Alcohol. 2013 Nov;47(7):517-29. doi: 10.1016/j.alcohol.2013.08.004. Epub 2013 Oct 1.
9
Animal models for medications development targeting alcohol abuse using selectively bred rat lines: neurobiological and pharmacological validity.
Pharmacol Biochem Behav. 2012 Nov;103(1):119-55. doi: 10.1016/j.pbb.2012.07.007. Epub 2012 Jul 25.
10
The emerging role for rat models in gene discovery.
Mamm Genome. 2011 Aug;22(7-8):466-75. doi: 10.1007/s00335-011-9346-2. Epub 2011 Jul 6.

本文引用的文献

1
A mitochondrial protein compendium elucidates complex I disease biology.
Cell. 2008 Jul 11;134(1):112-23. doi: 10.1016/j.cell.2008.06.016.
3
Molecular analysis of the GlcNac-1-phosphotransferase.
J Inherit Metab Dis. 2008 Apr;31(2):253-7. doi: 10.1007/s10545-008-0862-5. Epub 2008 Apr 15.
4
Drd2 expression in the high alcohol-preferring and low alcohol-preferring mice.
Mamm Genome. 2008 Feb;19(2):69-76. doi: 10.1007/s00335-007-9089-2. Epub 2008 Jan 23.
5
Regulatory mechanisms of mitogen-activated kinase signaling.
Cell Mol Life Sci. 2007 Nov;64(21):2771-89. doi: 10.1007/s00018-007-7012-3.
7
Ethanol-induced oxidative stress is mediated by p38 MAPK pathway in mouse hippocampal cells.
Neurosci Lett. 2007 May 23;419(1):64-7. doi: 10.1016/j.neulet.2007.03.049. Epub 2007 Mar 28.
8
Genome-wide genetic association of complex traits in heterogeneous stock mice.
Nat Genet. 2006 Aug;38(8):879-87. doi: 10.1038/ng1840. Epub 2006 Jul 9.
9
Linear models and empirical bayes methods for assessing differential expression in microarray experiments.
Stat Appl Genet Mol Biol. 2004;3:Article3. doi: 10.2202/1544-6115.1027. Epub 2004 Feb 12.
10
Effects of filtering by Present call on analysis of microarray experiments.
BMC Bioinformatics. 2006 Jan 31;7:49. doi: 10.1186/1471-2105-7-49.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验