Suppr超能文献

运动神经元存活基因缺失会破坏严重脊髓性肌肉萎缩症小鼠模型的大脑发育。

SMN deficiency disrupts brain development in a mouse model of severe spinal muscular atrophy.

机构信息

Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh Medical School, Edinburgh, UK.

出版信息

Hum Mol Genet. 2010 Nov 1;19(21):4216-28. doi: 10.1093/hmg/ddq340. Epub 2010 Aug 12.

Abstract

Reduced expression of the survival motor neuron (SMN) gene causes the childhood motor neuron disease spinal muscular atrophy (SMA). Low levels of ubiquitously expressed SMN protein result in the degeneration of lower motor neurons, but it remains unclear whether other regions of the nervous system are also affected. Here we show that reduced levels of SMN lead to impaired perinatal brain development in a mouse model of severe SMA. Regionally selective changes in brain morphology were apparent in areas normally associated with higher SMN levels in the healthy postnatal brain, including the hippocampus, and were associated with decreased cell density, reduced cell proliferation and impaired hippocampal neurogenesis. A comparative proteomics analysis of the hippocampus from SMA and wild-type littermate mice revealed widespread modifications in expression levels of proteins regulating cellular proliferation, migration and development when SMN levels were reduced. This study reveals novel roles for SMN protein in brain development and maintenance and provides the first insights into cellular and molecular pathways disrupted in the brain in a severe form of SMA.

摘要

运动神经元存活(SMN)基因表达减少导致儿童运动神经元疾病脊髓性肌萎缩症(SMA)。广泛表达的 SMN 蛋白水平低导致下运动神经元变性,但尚不清楚神经系统的其他区域是否也受到影响。在这里,我们展示了在严重 SMA 的小鼠模型中,SMN 水平降低会导致围产期大脑发育受损。在健康新生后脑中通常与较高 SMN 水平相关的区域,包括海马体,出现了区域性选择性的脑形态变化,与细胞密度降低、细胞增殖减少和海马神经发生受损有关。对 SMA 和野生型同窝仔鼠海马体的比较蛋白质组学分析表明,当 SMN 水平降低时,调节细胞增殖、迁移和发育的蛋白质表达水平广泛改变。这项研究揭示了 SMN 蛋白在大脑发育和维持中的新作用,并首次揭示了严重型 SMA 中大脑中受干扰的细胞和分子途径。

相似文献

1
SMN deficiency disrupts brain development in a mouse model of severe spinal muscular atrophy.
Hum Mol Genet. 2010 Nov 1;19(21):4216-28. doi: 10.1093/hmg/ddq340. Epub 2010 Aug 12.
2
SMN deficiency alters Nrxn2 expression and splicing in zebrafish and mouse models of spinal muscular atrophy.
Hum Mol Genet. 2014 Apr 1;23(7):1754-70. doi: 10.1093/hmg/ddt567. Epub 2013 Nov 11.
5
Motor transmission defects with sex differences in a new mouse model of mild spinal muscular atrophy.
EBioMedicine. 2020 May;55:102750. doi: 10.1016/j.ebiom.2020.102750. Epub 2020 Apr 24.
7
Neurodevelopmental consequences of Smn depletion in a mouse model of spinal muscular atrophy.
J Neurosci Res. 2010 Jan;88(1):111-22. doi: 10.1002/jnr.22189.
8
Hyperexcitability precedes motoneuron loss in the mouse model of spinal muscular atrophy.
J Neurophysiol. 2019 Oct 1;122(4):1297-1311. doi: 10.1152/jn.00652.2018. Epub 2019 Jul 31.
10
Normalization of Patient-Identified Plasma Biomarkers in SMNΔ7 Mice following Postnatal SMN Restoration.
PLoS One. 2016 Dec 1;11(12):e0167077. doi: 10.1371/journal.pone.0167077. eCollection 2016.

引用本文的文献

1
Neurodevelopmental screening in children with early-onset spinal muscular atrophy in the treatment era: a strengths-based cohort study.
Brain Commun. 2025 Jul 21;7(4):fcaf272. doi: 10.1093/braincomms/fcaf272. eCollection 2025.
2
Neonatal spinal muscular atrophy with brain magnetic resonance imaging hypersignal: a case report.
Front Pediatr. 2025 Apr 29;13:1508565. doi: 10.3389/fped.2025.1508565. eCollection 2025.
4
Quantitative synthetic MRI reveals grey matter abnormalities in patients with spinal muscular atrophy types 2 and 3.
Quant Imaging Med Surg. 2025 Mar 3;15(3):2319-2328. doi: 10.21037/qims-24-1095. Epub 2025 Feb 26.
5
The Role of Brain Plasticity in Neuromuscular Disorders: Current Knowledge and Future Prospects.
Brain Sci. 2024 Sep 26;14(10):971. doi: 10.3390/brainsci14100971.
7
Macrostructural Brain Abnormalities in Spinal Muscular Atrophy: A Case-Control Study.
Neurol Genet. 2024 Sep 20;10(5):e200193. doi: 10.1212/NXG.0000000000200193. eCollection 2024 Oct.
8
Isogenic patient-derived organoids reveal early neurodevelopmental defects in spinal muscular atrophy initiation.
Cell Rep Med. 2024 Aug 20;5(8):101659. doi: 10.1016/j.xcrm.2024.101659. Epub 2024 Jul 26.
9
Disrupted individual-level morphological brain network in spinal muscular atrophy types 2 and 3.
CNS Neurosci Ther. 2024 Jun;30(6):e14804. doi: 10.1111/cns.14804.

本文引用的文献

1
Review: neuromuscular synaptic vulnerability in motor neurone disease: amyotrophic lateral sclerosis and spinal muscular atrophy.
Neuropathol Appl Neurobiol. 2010 Apr;36(2):133-56. doi: 10.1111/j.1365-2990.2010.01061.x. Epub 2010 Feb 19.
2
Alternative splicing events are a late feature of pathology in a mouse model of spinal muscular atrophy.
PLoS Genet. 2009 Dec;5(12):e1000773. doi: 10.1371/journal.pgen.1000773. Epub 2009 Dec 18.
3
Pre-symptomatic development of lower motor neuron connectivity in a mouse model of severe spinal muscular atrophy.
Hum Mol Genet. 2010 Feb 1;19(3):420-33. doi: 10.1093/hmg/ddp506. Epub 2009 Nov 2.
4
Molecular correlates of axonal and synaptic pathology in mouse models of Batten disease.
Hum Mol Genet. 2009 Nov 1;18(21):4066-80. doi: 10.1093/hmg/ddp355. Epub 2009 Jul 29.
5
Spinal muscular atrophy: why do low levels of survival motor neuron protein make motor neurons sick?
Nat Rev Neurosci. 2009 Aug;10(8):597-609. doi: 10.1038/nrn2670. Epub 2009 Jul 8.
7
Congenital heart disease is a feature of severe infantile spinal muscular atrophy.
J Med Genet. 2008 Oct;45(10):635-8. doi: 10.1136/jmg.2008.057950. Epub 2008 Jul 28.
8
Pathogenesis of proximal autosomal recessive spinal muscular atrophy.
Acta Neuropathol. 2008 Sep;116(3):223-34. doi: 10.1007/s00401-008-0411-1. Epub 2008 Jul 16.
9
Diagnosis and clinical management of spinal muscular atrophy.
Phys Med Rehabil Clin N Am. 2008 Aug;19(3):661-80, xii. doi: 10.1016/j.pmr.2008.02.004.
10
Spinal muscular atrophy.
Lancet. 2008 Jun 21;371(9630):2120-33. doi: 10.1016/S0140-6736(08)60921-6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验