Suppr超能文献

脊髓性肌萎缩症小鼠模型中 SMN 蛋白水平的时间和组织特异性变异性。

Temporal and tissue-specific variability of SMN protein levels in mouse models of spinal muscular atrophy.

机构信息

Centre for Discovery Brain Sciences, Edinburgh Medical School: Biomedical Sciences.

Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh EH8 9XD, UK.

出版信息

Hum Mol Genet. 2018 Aug 15;27(16):2851-2862. doi: 10.1093/hmg/ddy195.

Abstract

Spinal muscular atrophy (SMA) is a progressive motor neuron disease caused by deleterious variants in SMN1 that lead to a marked decrease in survival motor neuron (SMN) protein expression. Humans have a second SMN gene (SMN2) that is almost identical to SMN1. However, due to alternative splicing the majority of SMN2 messenger ribonucleic acid (mRNA) is translated into a truncated, unstable protein that is quickly degraded. Because the presence of SMN2 provides a unique opportunity for therapy development in SMA patients, the mechanisms that regulate SMN2 splicing and mRNA expression have been elucidated in great detail. In contrast, how much SMN protein is produced at different developmental time points and in different tissues remains under-characterized. In this study, we addressed this issue by determining SMN protein expression levels at three developmental time points across six different mouse tissues and in two distinct mouse models of SMA ('severe' Taiwanese and 'intermediate' Smn2B/- mice). We found that, in healthy control mice, SMN protein expression was significantly influenced by both age and tissue type. When comparing mouse models of SMA, we found that, despite being transcribed from genetically different alleles, control SMN levels were relatively similar. In contrast, the degree of SMN depletion between tissues in SMA varied substantially over time and between the two models. These findings offer an explanation for the differential vulnerability of tissues and organs observed in SMA and further our understanding of the systemic and temporal requirements for SMN with direct relevance for developing effective therapies for SMA.

摘要

脊髓性肌萎缩症(SMA)是一种进行性运动神经元疾病,由 SMN1 中的有害变异引起,导致运动神经元存活(SMN)蛋白表达显著减少。人类有第二个 SMN 基因(SMN2),它与 SMN1 几乎相同。然而,由于剪接的差异,大多数 SMN2 信使核糖核酸(mRNA)被翻译成一种截断的、不稳定的蛋白质,很快就会被降解。由于 SMN2 的存在为 SMA 患者的治疗开发提供了独特的机会,因此已经详细阐明了调节 SMN2 剪接和 mRNA 表达的机制。相比之下,在不同的发育时间点和不同的组织中产生多少 SMN 蛋白仍然知之甚少。在这项研究中,我们通过在六个不同的小鼠组织和两种不同的 SMA 小鼠模型(“严重”台湾型和“中间”Smn2B/- 型)中三个发育时间点确定 SMN 蛋白表达水平来解决这个问题。我们发现,在健康对照小鼠中,SMN 蛋白表达受到年龄和组织类型的显著影响。在比较 SMA 小鼠模型时,我们发现,尽管它们是由遗传上不同的等位基因转录的,但对照 SMN 水平相对相似。相比之下,SMA 中组织之间的 SMN 耗竭程度随时间和两种模型而有很大差异。这些发现为 SMA 中观察到的组织和器官的不同易感性提供了解释,并进一步加深了我们对 SMN 的系统和时间要求的理解,这与开发 SMA 的有效疗法直接相关。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8873/6077828/2189a54206d7/ddy195f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验