See Kelvin, Yadav Preeti, Giegerich Marieke, Cheong Pearl S, Graf Martin, Vyas Himanshu, Lee Serene G P, Mathavan Sinnakaruppan, Fischer Utz, Sendtner Michael, Winkler Christoph
Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore.
Hum Mol Genet. 2014 Apr 1;23(7):1754-70. doi: 10.1093/hmg/ddt567. Epub 2013 Nov 11.
Spinal muscular atrophy (SMA) is a progressive neurodegenerative disease affecting lower motor neurons. SMA is caused by mutations in the Survival Motor Neuron 1 (SMN1) gene, which result in reduced levels of functional SMN protein. Biochemical studies have linked the ubiquitously expressed SMN protein to the assembly of pre-mRNA processing U snRNPs, raising the possibility that aberrant splicing is a major defect in SMA. Accordingly, several transcripts affected upon SMN deficiency have been reported. A second function for SMN in axonal mRNA transport has also been proposed that may likewise contribute to the SMA phenotype. The underlying etiology of SMA, however, is still not fully understood. Here, we have used a combination of genomics and live Ca(2+) imaging to investigate the consequences of SMN deficiency in a zebrafish model of SMA. In a transcriptome analyses of SMN-deficient zebrafish, we identified neurexin2a (nrxn2a) as strongly down-regulated and displaying changes in alternative splicing patterns. Importantly, the knock-down of two distinct nrxn2a isoforms phenocopies SMN-deficient fish and results in a significant reduction of motor axon excitability. Interestingly, we observed altered expression and splicing of Nrxn2 also in motor neurons from the Smn(-/-);SMN2(+/+) mouse model of SMA, suggesting conservation of nrxn2 regulation by SMN in mammals. We propose that SMN deficiency affects splicing and abundance of nrxn2a. This may explain the pre-synaptic defects at neuromuscular endplates in SMA pathophysiology.
脊髓性肌萎缩症(SMA)是一种影响下运动神经元的进行性神经退行性疾病。SMA由生存运动神经元1(SMN1)基因突变引起,该突变导致功能性SMN蛋白水平降低。生化研究已将普遍表达的SMN蛋白与前体mRNA加工U小核核糖核蛋白(U snRNPs)的组装联系起来,这增加了异常剪接是SMA主要缺陷的可能性。因此,已有报道称几种转录本在SMN缺乏时受到影响。还提出了SMN在轴突mRNA运输中的第二种功能,这同样可能导致SMA表型。然而,SMA的潜在病因仍未完全了解。在这里,我们结合基因组学和实时Ca(2+)成像来研究SMA斑马鱼模型中SMN缺乏的后果。在对SMN缺陷斑马鱼的转录组分析中,我们确定神经连接蛋白2a(nrxn2a)强烈下调并显示出可变剪接模式的变化。重要的是,敲低两种不同的nrxn2a异构体可模拟SMN缺陷鱼,并导致运动轴突兴奋性显著降低。有趣的是,我们在SMA的Smn(-/-);SMN2(+/+)小鼠模型的运动神经元中也观察到Nrxn2的表达和剪接发生改变,这表明SMN对nrxn2的调控在哺乳动物中具有保守性。我们提出,SMN缺乏会影响nrxn2a的剪接和丰度。这可能解释了SMA病理生理学中神经肌肉终板处的突触前缺陷。