Suppr超能文献

针对隐孢子虫肌苷单磷酸脱氢酶的抗寄生虫药物筛选流水线。

A screening pipeline for antiparasitic agents targeting cryptosporidium inosine monophosphate dehydrogenase.

机构信息

Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, United States of America.

出版信息

PLoS Negl Trop Dis. 2010 Aug 10;4(8):e794. doi: 10.1371/journal.pntd.0000794.

Abstract

BACKGROUND

The protozoan parasite Cryptosporidium parvum is responsible for significant disease burden among children in developing countries. In addition Cryptosporidiosis can result in chronic and life-threatening enteritis in AIDS patients, and the currently available drugs lack efficacy in treating these severe conditions. The discovery and development of novel anti-cryptosporidial therapeutics has been hampered by the poor experimental tractability of this pathogen. While the genome sequencing effort has identified several intriguing new targets including a unique inosine monophosphate dehydrogenase (IMPDH), pursuing these targets and testing inhibitors has been frustratingly difficult.

METHODOLOGY AND PRINCIPAL FINDINGS

Here we have developed a pipeline of tools to accelerate the in vivo screening of inhibitors of C. parvum IMPDH. We have genetically engineered the related parasite Toxoplasma gondii to serve as a model of C. parvum infection as the first screen. This assay provides crucial target validation and a large signal window that is currently not possible in assays involving C. parvum. To further develop compounds that pass this first filter, we established a fluorescence-based assay of host cell proliferation, and a C. parvum growth assay that utilizes automated high-content imaging analysis for enhanced throughput.

CONCLUSIONS AND SIGNIFICANCE

We have used these assays to evaluate C. parvum IMPDH inhibitors emerging from our ongoing medicinal chemistry effort and have identified a subset of 1,2,3-triazole ethers that exhibit excellent in vivo selectivity in the T. gondii model and improved anti-cryptosporidial activity.

摘要

背景

微小隐孢子虫是一种原生动物寄生虫,它在发展中国家的儿童中造成了巨大的疾病负担。此外,隐孢子虫病可导致艾滋病患者发生慢性和危及生命的肠炎,而目前可用的药物在治疗这些严重疾病方面效果不佳。由于该病原体的实验可操作性较差,新型抗隐孢子虫治疗药物的发现和开发受到了阻碍。虽然基因组测序工作已经确定了几个有趣的新靶点,包括独特的肌苷一磷酸脱氢酶(IMPDH),但追寻这些靶点并测试抑制剂的工作却令人沮丧地困难。

方法和主要发现

在这里,我们开发了一套工具,以加速体内筛选微小隐孢子虫 IMPDH 的抑制剂。我们通过基因工程将相关寄生虫弓形虫改造为微小隐孢子虫感染的模型,作为第一道筛选。该测定法提供了至关重要的靶标验证和目前在涉及微小隐孢子虫的测定法中不可能实现的大信号窗口。为了进一步开发通过第一道筛选的化合物,我们建立了一种基于荧光的宿主细胞增殖测定法和一种微小隐孢子虫生长测定法,该测定法利用自动化高内涵成像分析来提高通量。

结论和意义

我们使用这些测定法评估了我们正在进行的药物化学研究中出现的微小隐孢子虫 IMPDH 抑制剂,并确定了一组 1,2,3-三唑醚,它们在弓形虫模型中表现出出色的体内选择性和改善的抗隐孢子虫活性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ebd1/2919388/b71c4ad0cc07/pntd.0000794.g001.jpg

相似文献

1
A screening pipeline for antiparasitic agents targeting cryptosporidium inosine monophosphate dehydrogenase.
PLoS Negl Trop Dis. 2010 Aug 10;4(8):e794. doi: 10.1371/journal.pntd.0000794.
2
Triazole inhibitors of Cryptosporidium parvum inosine 5'-monophosphate dehydrogenase.
J Med Chem. 2009 Aug 13;52(15):4623-30. doi: 10.1021/jm900410u.
3
Phthalazinone inhibitors of inosine-5'-monophosphate dehydrogenase from Cryptosporidium parvum.
Bioorg Med Chem Lett. 2013 Feb 15;23(4):1004-7. doi: 10.1016/j.bmcl.2012.12.037. Epub 2012 Dec 27.
4
Selective and potent urea inhibitors of cryptosporidium parvum inosine 5'-monophosphate dehydrogenase.
J Med Chem. 2012 Sep 13;55(17):7759-71. doi: 10.1021/jm3007917. Epub 2012 Sep 5.
5
The structural basis of Cryptosporidium -specific IMP dehydrogenase inhibitor selectivity.
J Am Chem Soc. 2010 Feb 3;132(4):1230-1. doi: 10.1021/ja909947a.
6
Optimization of benzoxazole-based inhibitors of Cryptosporidium parvum inosine 5'-monophosphate dehydrogenase.
J Med Chem. 2013 May 23;56(10):4028-43. doi: 10.1021/jm400241j. Epub 2013 May 13.
7
Structure-activity relationship study of selective benzimidazole-based inhibitors of Cryptosporidium parvum IMPDH.
Bioorg Med Chem Lett. 2012 Mar 1;22(5):1985-8. doi: 10.1016/j.bmcl.2012.01.029. Epub 2012 Jan 24.
8
Repurposing existing drugs: identification of irreversible IMPDH inhibitors by high-throughput screening.
J Enzyme Inhib Med Chem. 2019 Dec;34(1):171-178. doi: 10.1080/14756366.2018.1540474.
10
Mycophenolic anilides as broad specificity inosine-5'-monophosphate dehydrogenase (IMPDH) inhibitors.
Bioorg Med Chem Lett. 2020 Dec 15;30(24):127543. doi: 10.1016/j.bmcl.2020.127543. Epub 2020 Sep 12.

引用本文的文献

1
Effect of urea and squaramide IMPDH inhibitors on C. parvum: in vitro trial design impacts the assessment of drug efficacy.
Int J Parasitol Drugs Drug Resist. 2025 Apr 15;28:100592. doi: 10.1016/j.ijpddr.2025.100592.
2
Paving the Way: Contributions of Big Data to Apicomplexan and Kinetoplastid Research.
Front Cell Infect Microbiol. 2022 Jun 6;12:900878. doi: 10.3389/fcimb.2022.900878. eCollection 2022.
3
Comparative proteomics reveals Cryptosporidium parvum manipulation of the host cell molecular expression and immune response.
PLoS Negl Trop Dis. 2021 Nov 24;15(11):e0009949. doi: 10.1371/journal.pntd.0009949. eCollection 2021 Nov.
5
Recent advances in genetic manipulation of Cryptosporidium.
Curr Opin Microbiol. 2020 Dec;58:146-152. doi: 10.1016/j.mib.2020.09.010. Epub 2020 Nov 5.
6
Molecular Basis of P131 Cryptosporidial-IMPDH Selectivity-A Structural, Dynamical and Mechanistic Stance.
Cell Biochem Biophys. 2021 Mar;79(1):11-24. doi: 10.1007/s12013-020-00950-1. Epub 2020 Oct 15.
7
Mycophenolic anilides as broad specificity inosine-5'-monophosphate dehydrogenase (IMPDH) inhibitors.
Bioorg Med Chem Lett. 2020 Dec 15;30(24):127543. doi: 10.1016/j.bmcl.2020.127543. Epub 2020 Sep 12.
8
Targeting Genome Integrity in : From Nucleotide Synthesis to DNA Replication and Repair.
Molecules. 2020 Mar 7;25(5):1205. doi: 10.3390/molecules25051205.
9
Genetic ablation of purine salvage in reveals nucleotide uptake from the host cell.
Proc Natl Acad Sci U S A. 2019 Oct 15;116(42):21160-21165. doi: 10.1073/pnas.1908239116. Epub 2019 Sep 30.

本文引用的文献

1
The structural basis of Cryptosporidium -specific IMP dehydrogenase inhibitor selectivity.
J Am Chem Soc. 2010 Feb 3;132(4):1230-1. doi: 10.1021/ja909947a.
2
The toxoplasma apicoplast phosphate translocator links cytosolic and apicoplast metabolism and is essential for parasite survival.
Cell Host Microbe. 2010 Jan 21;7(1):62-73. doi: 10.1016/j.chom.2009.12.002. Epub 2009 Dec 31.
4
Cryptosporidiosis in developing countries.
J Infect Dev Ctries. 2007 Dec 1;1(3):242-56.
5
Cryptosporidium and Giardia: treatment options and prospects for new drugs.
Exp Parasitol. 2010 Jan;124(1):45-53. doi: 10.1016/j.exppara.2009.07.005. Epub 2009 Jul 24.
6
Triazole inhibitors of Cryptosporidium parvum inosine 5'-monophosphate dehydrogenase.
J Med Chem. 2009 Aug 13;52(15):4623-30. doi: 10.1021/jm900410u.
7
IMP dehydrogenase: structure, mechanism, and inhibition.
Chem Rev. 2009 Jul;109(7):2903-28. doi: 10.1021/cr900021w.
8
The role of ATP-binding cassette (ABC) proteins in protozoan parasites.
Mol Biochem Parasitol. 2009 Oct;167(2):81-94. doi: 10.1016/j.molbiopara.2009.05.005. Epub 2009 May 21.
9
Combination of cell culture and quantitative PCR for screening of drugs against Cryptosporidium parvum.
Vet Parasitol. 2009 Jun 10;162(3-4):271-7. doi: 10.1016/j.vetpar.2009.03.009. Epub 2009 Mar 13.
10
Dynamics of neutrophil migration in lymph nodes during infection.
Immunity. 2008 Sep 19;29(3):487-96. doi: 10.1016/j.immuni.2008.07.012. Epub 2008 Aug 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验