Department of Neurosurgery, University of California, San Francisco, California, USA.
J Neurosurg. 2011 Jan;114(1):62-70. doi: 10.3171/2010.6.JNS091360. Epub 2010 Aug 13.
Cerebral autoregulation may be altered after traumatic brain injury (TBI). Recent evidence suggests that patients' autoregulatory status following severe TBI may influence cerebral perfusion pressure management. The authors evaluated the utility of incorporating a recently upgraded parenchymal thermal diffusion probe for the measurement of cerebral blood flow (CBF) in the neurointensive care unit for assessing cerebral autoregulation and vasoreactivity at bedside.
The authors evaluated 20 patients with severe TBI admitted to San Francisco General Hospital who underwent advanced neuromonitoring. Patients had a parenchymal thermal diffusion probe placed for continuous bedside monitoring of local CBF ((loc)CBF) in addition to the standard intracranial pressure and brain tissue oxygen tension (P(bt)O(2)) monitoring. The CBF probes were placed in the white matter using a separate cranial bolt. A pressure challenge, whereby mean arterial pressure (MAP) was increased by about 10 mm Hg, was performed in all patients to assess autoregulation. Cerebral CO(2) vasoreactivity was assessed with a hyperventilation challenge. Local cerebral vascular resistance ((loc)CVR) was calculated by dividing cerebral perfusion pressure by (loc)CBF. Local cerebral vascular resistance normalized to baseline ((loc)CVR(normalized)) was also calculated for the MAP and hyperventilation challenges.
In all cases, bedside measurement of (loc)CBF using a cranial bolt in patients with severe TBI resulted in correct placement in the white matter with a low rate of complications. Mean (loc)CBF decreased substantially with hyperventilation challenge (-7 ± 8 ml/100 g/min, p = 0.0002) and increased slightly with MAP challenge (1 ± 7 ml/100 g/min, p = 0.17). Measurements of (loc)CBF following MAP and hyperventilation challenges can be used to calculate (loc)CVR. In 83% of cases, (loc)CVR increased during a hyperventilation challenge (mean change +3.5 ± 3.8 mm Hg/ml/100 g/min, p = 0.0002), indicating preserved cerebral CO(2) vasoreactivity. In contrast, we observed a more variable response of (loc)CVR to MAP challenge, with increased (loc)CVR in only 53% of cases during a MAP challenge (mean change -0.17 ± 3.9 mm Hg/ml/100 g/min, p = 0.64) indicating that in many cases autoregulation was impaired following severe TBI.
Use of the Hemedex thermal diffusion probe appears to be a safe and feasible method that enables continuous monitoring of CBF at the bedside. Cerebral autoregulation and CO(2) vasoreactivity can be assessed in patients with severe TBI using the CBF probe by calculating (loc)CVR in response to MAP and hyperventilation challenges. Determining whether CVR increases or decreases with a MAP challenge ((loc)CVR(normalized)) may be a simple provocative test to determine patients' autoregulatory status following severe TBI and helping to optimize CPP management.
颅脑损伤(TBI)后可能会改变脑自动调节功能。最近的证据表明,严重 TBI 患者的自动调节状态可能会影响脑灌注压的管理。作者评估了最近升级的组织热扩散探头在神经重症监护病房(NICU)床边评估脑自动调节和血管反应性的实用性,该探头可用于测量脑血流(CBF)。
作者评估了 20 名因严重 TBI 而入住旧金山总医院的患者,这些患者接受了高级神经监测。除了标准的颅内压和脑组织氧张力(PbtO2)监测外,患者还通过单独的颅钉放置了组织热扩散探头,以进行局部 CBF(locCBF)的连续床边监测。将 CBF 探头放置在白质中。所有患者均进行平均动脉压(MAP)增加约 10mmHg 的压力挑战,以评估自动调节。通过过度通气挑战评估脑 CO2 血管反应性。通过将脑灌注压除以(loc)CBF 来计算局部脑血管阻力((loc)CVR)。还为 MAP 和过度通气挑战计算了(loc)CVR 与基线的归一化比值((loc)CVR(normalized))。
在所有情况下,使用颅钉在严重 TBI 患者中进行的床边 locCBF 测量都能正确放置在白质中,且并发症发生率较低。过度通气挑战时平均(loc)CBF 明显下降(-7±8ml/100g/min,p=0.0002),MAP 挑战时略有增加(1±7ml/100g/min,p=0.17)。MAP 和过度通气挑战后(loc)CBF 的测量值可用于计算(loc)CVR。在 83%的病例中,过度通气挑战时(loc)CVR 增加(平均变化+3.5±3.8mmHg/ml/100g/min,p=0.0002),表明存在脑 CO2 血管反应性。相比之下,我们观察到 MAP 挑战时(loc)CVR 的反应更为多变,只有 53%的病例在 MAP 挑战时(loc)CVR 增加(平均变化-0.17±3.9mmHg/ml/100g/min,p=0.64),表明在许多情况下,严重 TBI 后自动调节受损。
Hemedex 热扩散探头的使用似乎是一种安全可行的方法,可在床边连续监测 CBF。通过计算 MAP 和过度通气挑战时(loc)CBF 的变化来计算(loc)CVR,可以评估严重 TBI 患者的脑自动调节和 CO2 血管反应性。确定 MAP 挑战时(loc)CVR 是增加还是减少((loc)CVR(normalized))可能是一种简单的激发试验,用于确定严重 TBI 后患者的自动调节状态,并有助于优化 CPP 管理。